Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface-enhanced Raman scattering holography

Abstract

Nanometric probes based on surface-enhanced Raman scattering (SERS) are promising candidates for all-optical environmental, biological and technological sensing applications with intrinsic quantitative molecular specificity. However, the effectiveness of SERS probes depends on a delicate trade-off between particle size, stability and brightness that has so far hindered their wide application in SERS imaging methodologies. In this Article, we introduce holographic Raman microscopy, which allows single-shot three-dimensional single-particle localization. We validate our approach by simultaneously performing Fourier transform Raman spectroscopy of individual SERS nanoparticles and Raman holography, using shearing interferometry to extract both the phase and the amplitude of wide-field Raman images and ultimately localize and track single SERS nanoparticles inside living cells in three dimensions. Our results represent a step towards multiplexed single-shot three-dimensional concentration mapping in many different scenarios, including live cell and tissue interrogation and complex anti-counterfeiting applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bright SERS superclusters for spontaneous Raman holography.
Fig. 2: Wide-field time-domain SERS spectroscopy.
Fig. 3: Spectral image multiplexing.
Fig. 4: Extracting spatial phase information from Raman images.
Fig. 5: Multiplexed Raman phase images.
Fig. 6: Live-cell SERS particle tracking.

Data availability

The materials and data that support the findings of this study are available from the corresponding authors on request.

Code availability

The software used for data analysis is available from the corresponding authors on request.

References

  1. 1.

    Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 4009, 5215–5217 (1977).

    Article  Google Scholar 

  2. 2.

    Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, Aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    CAS  Article  Google Scholar 

  3. 3.

    Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine absorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS  Article  Google Scholar 

  4. 4.

    Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    Lane, L. A., Qian, X. & Nie, S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115, 10489–10529 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Wang, Y., Yan, B. & Chen, L. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113, 1391–1428 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, X., Young, M. A., Lyandres, O. & Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 127, 4484–4489 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Grubisha, D. S., Lipert, R. J., Park, H.-Y., Driskell, J. & Porter, M. D. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936–5943 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Pazos, E. et al. Surface-enhanced Raman scattering surface selection rules for the proteomic liquid biopsy in real samples: efficient detection of the oncoprotein c-MYC. J. Am. Chem. Soc. 138, 14206–14209 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Dasary, S. S. R., Singh, A. K., Senapati, D., Yu, H. & Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 131, 13806–13812 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Pazos-Perez, N. et al. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Sci. Rep. 6, 29014 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Pallaoro, A., Hoonejani, M. R., Braun, G. B., Meinhart, C. D. & Moskovits, M. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9, 4328–4336 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Palonpon, A. F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677–692 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Rivera-Gil, P. et al. Plasmonic nanoprobes for real-time optical monitoring of nitric oxide inside living cells. Angew. Chem. Int. Ed. 125, 13939–13943 (2013).

    Article  Google Scholar 

  16. 16.

    Phan-Quang, G. C. et al. Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc. Chem. Res. 52, 1844–1854 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Latychevskaia, T. & Fink, H.-W. Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution. Opt. Express 22, 20994–21003 (2014).

    Article  Google Scholar 

  19. 19.

    Molaei, M. & Sheng, J. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm. Opt. Express 22, 32119–32137 (2014).

    Article  Google Scholar 

  20. 20.

    Memmolo, P. et al. Recent advances in holographic 3D particle tracking. Adv. Opt. Photonics 7, 713–755 (2015).

    Article  Google Scholar 

  21. 21.

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    CAS  Article  Google Scholar 

  22. 22.

    Cuche, E., Marquet, P. & Depeursinge, C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39, 4070–4075 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    Bon, P. et al. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat. Methods 15, 449–454 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Patorski, K. The self-imaging phenomenon and its applications. Prog. Opt. 27, 1–108 (1989).

    Article  Google Scholar 

  25. 25.

    Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    Maznev, A. A., Crimmins, T. F. & Nelson, K. A. How to make femtosecond pulses overlap. Opt. Lett. 23, 1378–1380 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982).

    Article  Google Scholar 

  30. 30.

    Arnison, M. R., Larkin, K. G., Sheppard, C. J. R., Smith, N. I. & Cogswell, C. J. Linear phase imaging using differential interference contrast microscopy. J. Microsc. 214, 7–12 (2003).

    Article  Google Scholar 

  31. 31.

    Choi, I., Lee, K. & Park, Y. Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration. Opt. Express 25, 30771–30779 (2017).

    Article  Google Scholar 

  32. 32.

    Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Rubin, M., Dardikman, G., Mirsky, S. K., Turko, N. A. & Shaked, N. T. Six-pack off-axis holography. Opt. Lett. 42, 4611–4614 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Rivas for her support with the live-cell experiments. We acknowledge support by the Ministry of Science, Innovation and Universities (MCIU/AEI: RTI2018-099957-J-I00 and PGC2018-096875-B-I00), the Ministry of Economy (MINECO: CTQ2017-88648-R, RYC-2015-19107 and ‘Severo Ochoa’ programme for Centers of Excellence in R&D CEX2019-000910-S), the Catalan AGAUR (2017SGR1369 and 2017SGR883), Fundació Privada Cellex, Fundació Privada Mir-Puig, the Generalitat de Catalunya through the CERCA programme and the Universitat Rovira i Virgili (FR 2019-B2). N.F.v.H. acknowledges the financial support by the European Commission (ERC Advanced Grant 670949-LightNet).

Author information

Affiliations

Authors

Contributions

M.L. constructed the optical experiment, performed the measurements and analysed the data. M.L. conceived the experiment. N.P.P. and R.A.A.P. synthesized and characterized the nanoparticles. M.L. wrote the manuscript. M.L., N.F.v.H. and R.A.A.P. contributed to the interpretation of the data, discussion and writing of the manuscript.

Corresponding authors

Correspondence to Matz Liebel or Niek F. van Hulst or Ramon A. Alvarez-Puebla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Pasquale Memmolo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Information S1–S7.

Supplementary Video 1

Live-cell tracking video supporting Fig. 6, showing bright-field (grey) and SERS (pink) signals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liebel, M., Pazos-Perez, N., van Hulst, N.F. et al. Surface-enhanced Raman scattering holography. Nat. Nanotechnol. 15, 1005–1011 (2020). https://doi.org/10.1038/s41565-020-0771-9

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research