Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles

Abstract

The concept of plasmonic hotspots is central to the interpretation of the surface-enhanced Raman scattering (SERS) effect. Although plasmonic hotspots are generally portrayed as static features, single-molecule SERS (SM-SERS) is marked by characteristic time-dependent fluctuations in signal intensity. The origin of those fluctuations can be assigned to a variety of dynamic and complex processes, including molecular adsorption or desorption, surface diffusion, molecular reorientation and metal surface reconstruction. Since each of these mechanisms simultaneously contributes to a fluctuating SERS signal, probing their relative impact in SM-SERS remains an experimental challenge. Here, we introduce a super-resolution imaging technique with an acquisition rate of 800,000 frames per second to probe the spatial and temporal features of the SM-SERS fluctuations from single silver nanoshells. The technique has a spatial resolution of ~7 nm. The images reveal short ~10 µs scattering events localized in various regions on a single nanoparticle. Remarkably, even a fully functionalized nanoparticle was ‘dark’ more than 98% of the time. The sporadic SERS emission suggests a transient hotspot formation mechanism driven by a random reconstruction of the metallic surface, an effect that dominates over any plasmonic resonance of the particle itself. Our results provide the SERS community with a high-speed experimental approach to study the fast dynamic properties of SM-SERS hotspots in typical room-temperature experimental conditions, with possible implications in catalysis and sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental overview.
Fig. 2: High-speed SERS signal acquisition and super-resolution imaging.
Fig. 3: Time statistics and spatial locations of single-molecule SIFs.
Fig. 4: Wavelength, temperature and power dependence of SIFs.

Similar content being viewed by others

Data availability

The data that support the conclusions of this study are available from the corresponding author upon request.

Code availability

The MATLAB codes used in this study are available from the corresponding author upon request.

References

  1. de Albuquerque, C. D. L., Sobral-Filho, R. G., Poppi, R. J. & Brolo, A. G. Digital protocol for chemical analysis at ultralow concentrations by surface-enhanced Raman scattering. Anal. Chem. 90, 1248–1254 (2018).

    Article  Google Scholar 

  2. Ru, E. C. L. & Etchegoin, P. G. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 63, 65–87 (2012).

    Article  Google Scholar 

  3. Moerner, W. E. & Fromm, D. P. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003).

    Article  CAS  Google Scholar 

  4. Kiefl, E. J., Kiefl, R. F., dos Santos, D. P. & Brolo, A. G. Evaluation of surface-enhanced Raman spectroscopy substrates from single-molecule statistics. J. Phys. Chem. C 121, 25487–25493 (2017).

    Article  CAS  Google Scholar 

  5. dos Santos, D. P., Temperini, M. L. A. & Brolo, A. G. Mapping the energy distribution of SERRS hot spots from anti-Stokes to Stokes intensity ratios. J. Am. Chem. Soc. 134, 13492–13500 (2012).

    Article  Google Scholar 

  6. Haslett, T. L., Tay, L. & Moskovits, M. Can surface-enhanced Raman scattering serve as a channel for strong optical pumping? J. Chem. Phys. 113, 1641–1646 (2000).

    Article  CAS  Google Scholar 

  7. Brolo, A. G., Sanderson, A. C. & Smith, A. P. Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes-Raman scattering for molecules adsorbed on a silver electrode. Phys. Rev. B 69, 045424 (2004).

    Article  Google Scholar 

  8. dos Santos, D. P., Temperini, M. L. A. & Brolo, A. G. Single-molecule surface-enhanced (resonance) Raman scattering (SE(R)RS) as a probe for metal colloid aggregation state. J. Phys. Chem. C 120, 20877–20885 (2016).

    Article  Google Scholar 

  9. Shin, H.-H. et al. Frequency-domain proof of the existence of atomic-scale SERS hot-spots. Nano Lett. 18, 262–271 (2018).

    Article  CAS  Google Scholar 

  10. Chen, H.-Y., Lin, M.-H., Wang, C.-Y., Chang, Y.-M. & Gwo, S. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 137, 13698–13705 (2015).

    Article  CAS  Google Scholar 

  11. Fan, M., Andrade, G. F. S. & Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 693, 7–25 (2011).

    Article  CAS  Google Scholar 

  12. Dick, L. A., McFarland, A. D., Haynes, C. L. & Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002).

    Article  CAS  Google Scholar 

  13. Fang, Y., Seong, N.-H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008).

    Article  CAS  Google Scholar 

  14. Xu, H., Aizpurua, J., Käll, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000).

    Article  CAS  Google Scholar 

  15. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  CAS  Google Scholar 

  16. Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018).

    Article  CAS  Google Scholar 

  17. Dieringer, J. A., Lettan, R. B., Scheidt, K. A. & Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249–16256 (2007).

    Article  CAS  Google Scholar 

  18. Willets, K. A. & Duyne, R. P. V. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  19. Westcott, S. L., Averitt, R. D., Wolfgang, J. A., Nordlander, P. & Halas, N. J. Adsorbate-induced quenching of hot electrons in gold core−shell nanoparticles. J. Phys. Chem. B 105, 9913–9917 (2001).

    Article  CAS  Google Scholar 

  20. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  Google Scholar 

  21. Itoh, T. & Yamamoto, Y. S. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst 141, 5000–5009 (2016).

    Article  CAS  Google Scholar 

  22. Choi, H.-K. et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 138, 4673–4684 (2016).

    Article  CAS  Google Scholar 

  23. Sprague-Klein, E. A. et al. Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers. J. Am. Chem. Soc. 140, 10583–10592 (2018).

    Article  CAS  Google Scholar 

  24. Ward, D. R. et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 7, 1396–1400 (2007).

    Article  CAS  Google Scholar 

  25. Baletto, F., Mottet, C. & Ferrando, R. Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters. Surf. Sci. 446, 31–45 (2000).

    Article  CAS  Google Scholar 

  26. Van Siclen, C. D. Single jump mechanisms for large cluster diffusion on metal surfaces. Phys. Rev. Lett. 75, 1574–1577 (1995).

    Article  Google Scholar 

  27. Morgenstern, K., Rosenfeld, G., Poelsema, B. & Comsa, G. Brownian motion of vacancy islands on Ag(111). Phys. Rev. Lett. 74, 2058–2061 (1995).

    Article  CAS  Google Scholar 

  28. Brito-Silva, A. M. et al. Improved synthesis of gold and silver nanoshells. Langmuir 29, 4366–4372 (2013).

    Article  CAS  Google Scholar 

  29. Sobral-Filho, R. G. et al. Plasmonic labeling of subcellular compartments in cancer cells: multiplexing with fine-tuned gold and silver nanoshells. Chem. Sci. 8, 3038–3046 (2017).

    Article  CAS  Google Scholar 

  30. Ertsgaard, C. T., McKoskey, R. M., Rich, I. S. & Lindquist, N. C. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering. ACS Nano 8, 10941–10946 (2014).

    Article  CAS  Google Scholar 

  31. Stranahan, S. M. & Willets, K. A. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10, 3777–3784 (2010).

    Article  CAS  Google Scholar 

  32. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  CAS  Google Scholar 

  33. Chiang, N. et al. Conformational contrast of surface-mediated molecular switches yields ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 7774–7778 (2016).

    Article  CAS  Google Scholar 

  34. Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    Article  CAS  Google Scholar 

  35. Trautmann, S. et al. A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale 9, 391–401 (2017).

    Article  CAS  Google Scholar 

  36. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43, 3854–3864 (2014).

    Article  CAS  Google Scholar 

  37. Olson, A. P., Ertsgaard, C. T., Elliott, S. N. & Lindquist, N. C. Super-resolution chemical imaging with plasmonic substrates. ACS Photon. 3, 329–336 (2016).

    Article  CAS  Google Scholar 

  38. Olson, A. P., Spies, K. B., Browning, A. C., Soneral, P. A. G. & Lindquist, N. C. Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Sci. Rep. 7, 9135 (2017).

    Article  Google Scholar 

  39. Huff, J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 12, 1205 (2015).

    Article  Google Scholar 

  40. Huff, J. et al. The new 2D Superresolution mode for ZEISS Airyscan. Nat. Methods 14, 1223 (2017).

    Article  Google Scholar 

  41. Scipioni, L., Lanzanó, L., Diaspro, A. & Gratton, E. Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector. Nat. Commun. 9, 5120 (2018).

    Article  CAS  Google Scholar 

  42. Wertz, E., Isaacoff, B. P., Flynn, J. D. & Biteen, J. S. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. Nano Lett. 15, 2662–2670 (2015).

    Article  CAS  Google Scholar 

  43. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  CAS  Google Scholar 

  44. Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Article  Google Scholar 

  45. Schmidt, M. K., Esteban, R., González-Tudela, A., Giedke, G. & Aizpurua, J. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10, 6291–6298 (2016).

    Article  CAS  Google Scholar 

  46. Li, H. et al. Ag nanoparticle-induced oxidative dimerization of thiophenols: efficiency and mechanism. Langmuir 34, 11347–11353 (2018).

    Article  CAS  Google Scholar 

  47. Zhang, Z. & Kneipp, J. Mapping the inhomogeneity in plasmonic catalysis on supported gold nanoparticles using surface-enhanced Raman scattering microspectroscopy. Anal. Chem. 90, 9199–9205 (2018).

    Article  CAS  Google Scholar 

  48. Zhang, Z., Richard-Lacroix, M. & Deckert, V. Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production. Faraday Discuss. 205, 213–226 (2017).

    Article  CAS  Google Scholar 

  49. Paul, W., Oliver, D., Miyahara, Y. & Grütter, P. FIM tips in SPM: apex orientation and temperature considerations on atom transfer and diffusion. Appl. Surf. Sci. 305, 124–132 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an operating grant from NSERC Discovery Grant programme and by the National Science Foundation through CAREER grant no. 1552642. We also thank Compute Canada for access to computational resources. Instrument grants were provided by the Canada Foundation for Innovation, the British Columbia knowledge and Development fund (BCKDF) and by the University of Victoria. We also thank C. Bohne for access to the temperature-controlled stage.

Author information

Authors and Affiliations

Authors

Contributions

R.G.S.-F. synthesized and characterized the nanoparticles. I.P. performed the computational work. N.C.L. and C.D.L.d.A. contributed equally to all other experiments. A.G.B., N.C.L. and C.D.L.d.A. wrote the paper together.

Corresponding author

Correspondence to Alexandre G. Brolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Nanotechnology thanks Francois Lagugné-Labarthet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Supplementary Movie 1

Atomic fluctuations in a metal cluster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindquist, N.C., de Albuquerque, C.D.L., Sobral-Filho, R.G. et al. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol. 14, 981–987 (2019). https://doi.org/10.1038/s41565-019-0535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0535-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing