Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal

Abstract

Heterostructures combining a thin layer of quantum emitters and planar nanostructures enable custom-tailored photoluminescence in an integrated fashion. Here, we demonstrate a photonic Rashba effect from valley excitons in a WSe2 monolayer, which is incorporated into a photonic crystal slab with geometric phase defects, that is, into a Berry-phase defective photonic crystal. This phenomenon of spin-split dispersion in momentum space arises from a coherent geometric phase pickup assisted by the Berry-phase defect mode. The valley excitons effectively interact with the defects for site-controlled excitation, photoluminescence enhancement and spin-dependent manipulation. Specifically, the spin-dependent branches of photoluminescence in momentum space originate from valley excitons with opposite helicities and evidence the valley separation at room temperature. To further demonstrate the versatility of the Berry-phase defective photonic crystals, we use this concept to separate opposite spin states of quantum dot emission. This spin-enabled manipulation of quantum emitters may enable highly efficient metasurfaces for customized planar sources with spin-polarized directional emission.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal.
Fig. 2: Principle of Berry-phase defective PhC.
Fig. 3: Observation of photonic Rashba effect from valley excitons in a WSe2 monolayer.
Fig. 4: Observation of photonic Rashba effect from QDs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Empedocles, S. A., Neuhauser, R. & Bawendi, M. G. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999).

    Article  Google Scholar 

  3. 3.

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  Google Scholar 

  4. 4.

    Staude, I., Pertsch, T. & Kivshar, Y. S. All-dielectric resonant meta-optics lightens up. ACS Photonics 6, 802–814 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photon. 12, 284–290 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    de Leo, E. et al. Polarization multiplexing of fluorescent emission using multiresonant plasmonic antennas. ACS Nano 11, 12167–12173 (2017).

    Article  Google Scholar 

  7. 7.

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  Google Scholar 

  8. 8.

    Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Sun, L. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photon. 13, 180–184 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  Google Scholar 

  11. 11.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  13. 13.

    Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Pors, A., Albrektsen, O., Radko, I. P. & Bozhevolnyi, S. I. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. 3, 2155 (2013).

    Article  Google Scholar 

  18. 18.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin-orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  Google Scholar 

  21. 21.

    Wang, B., Rong, K., Maguid, E., Kleiner, V. & Hasman, E. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect. Nat. Nanotechnol. 15, 450–456 (2020).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, B. et al. Photonic topological spin Hall effect mediated by vortex pairs. Phys. Rev. Lett. 123, 266101 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Dahan, N., Gorodetski, Y., Frischwasser, K., Kleiner, V. & Hasman, E. Geometric Doppler effect: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).

    Article  Google Scholar 

  24. 24.

    Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  26. 26.

    Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Kolodziejski, L. A. Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    Bayindir, M., Temelkuran, B. & Ozbay, E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140–2143 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    Richter, S. et al. Periodically arranged point defects in two-dimensional photonic crystals. Phys. Rev. B 70, 193302 (2004).

    Article  Google Scholar 

  31. 31.

    Goldstein, D. H. & Collett, E. Polarized Light 2nd edn (Marcel Dekker, 2003).

  32. 32.

    Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    CAS  Article  Google Scholar 

  33. 33.

    Garcia-Adeva, A. Band gap atlas for photonic crystals having the symmetry of the kagomé and pyrochlore lattices. New J. Phys. 8, 86 (2006).

    Article  Google Scholar 

  34. 34.

    Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2006).

  35. 35.

    Neugebauer, M., Banzer, P. & Nechayev, S. Emission of circularly polarized light by a linear dipole. Sci. Adv. 5, eaav7588 (2019).

    Article  Google Scholar 

  36. 36.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Baranov, D. G. et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4, 814–825 (2017).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Israel Science Foundation (ISF); the US Air Force Office of Scientific Research (FA9550-18-1-0208) through their programme on Photonic Metamaterials; the Israel Ministry of Science, Technology and Space; the United States–Israel Binational Science Foundation (BSF); and, in part, the Technion via an Aly Kaufman Fellowship. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit (MNF&PU), Technion.

Author information

Affiliations

Authors

Contributions

All authors contributed substantially to this work.

Corresponding author

Correspondence to Erez Hasman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Alexandr Krasnok and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–22 and refs. 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rong, K., Wang, B., Reuven, A. et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. Nat. Nanotechnol. 15, 927–933 (2020). https://doi.org/10.1038/s41565-020-0758-6

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research