Probing photoelectrical transport in lead halide perovskites with van der Waals contacts


Lead halide perovskites have attracted increasing interest for their exciting potential in diverse optoelectronic devices. However, their charge transport properties remain elusive, plagued by the issues of excessive contact resistance and large hysteresis in ambient conditions. Here we report a van der Waals integration approach for creating high-performance contacts on monocrystalline halide perovskite thin films with minimum interfacial damage and an atomically clean interface. Compared to the deposited contacts, our van der Waals contacts exhibit two to three orders of magnitude lower contact resistance, enabling systematic transport studies in a wide temperature range. We report a Hall mobility exceeding 2,000 cm2 V–1 s–1 at around 80 K, an ultralow bimolecular recombination coefficient of 3.5 × 10–15 cm3 s–1 and a photocurrent gain >106 in the perovskite thin films. Furthermore, magnetotransport studies reveal a quantum-interference-induced weak localization behaviour with a phase coherence length up to 49 nm at 3.5 K. Our results lay the foundation for exploring new physics in this class of ‘soft-lattice’ materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of monocrystalline CsPbBr3 thin film.
Fig. 2: Formation of damage-free vdW-contacts by transfer approach.
Fig. 3: Performance of the vdW-contacts.
Fig. 4: Electrically probing the photocarrier dynamics of perovskites using vdW-contacts.
Fig. 5: Magnetoresistance at the lowest temperatures.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    CAS  Google Scholar 

  2. 2.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Google Scholar 

  3. 3.

    Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015).

    CAS  Google Scholar 

  4. 4.

    Spicer, W., Chye, P., Garner, C., Lindau, I. & Pianetta, P. The surface electronic structure of 3–5 compounds and the mechanism of Fermi level pinning by oxygen (passivation) and metals (Schottky barriers). Surf. Sci. 86, 763–788 (1979).

    CAS  Google Scholar 

  5. 5.

    Haick, H., Ambrico, M., Ghabboun, J., Ligonzo, T. & Cahen, D. Contacting organic molecules by metal evaporation. Phys. Chem. Chem. Phys. 6, 4538–4541 (2004).

    CAS  Google Scholar 

  6. 6.

    Miyata, K., Atallah, T. L. & Zhu, X. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Google Scholar 

  7. 7.

    Mott, N. F. & Gurney, R. W. Electronic Processes in Ionic Crystals (Oxford Univeristy Press, 1940).

  8. 8.

    Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    CAS  Google Scholar 

  9. 9.

    Green, M. A. Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys. 67, 2944–2954 (1990).

    CAS  Google Scholar 

  10. 10.

    Manfra, M. J. Molecular beam epitaxy of ultra-high-quality AlGaAs/GaAs heterostructures: enabling physics in low-dimensional electronic systems. Annu. Rev. Condens. Matter Phys. 5, 347–373 (2014).

    CAS  Google Scholar 

  11. 11.

    Chen, Y. et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7, 12253 (2016).

    CAS  Google Scholar 

  12. 12.

    Yi, H. T., Wu, X., Zhu, X. & Podzorov, V. Intrinsic charge transport across phase transitions in hybrid organo‐inorganic perovskites. Adv. Mater. 28, 6509–6514 (2016).

    CAS  Google Scholar 

  13. 13.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices. (Wiley, 2006).

  14. 14.

    Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    CAS  Google Scholar 

  15. 15.

    Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    CAS  Google Scholar 

  16. 16.

    Du, Y., Neal, A. T., Zhou, H. & Peide, D. Y. Weak localization in few-layer black phosphorus. 2D Mater. 3, 024003 (2016).

    Google Scholar 

  17. 17.

    Zeng, J. et al. Gate-tunable weak antilocalization in a few-layer InSe. Phys. Rev. B 98, 125414 (2018).

    CAS  Google Scholar 

  18. 18.

    Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016).

    CAS  Google Scholar 

  19. 19.

    Imran, M. et al. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals. ACS Energy Lett. 4, 819–824 (2019).

    CAS  Google Scholar 

  20. 20.

    Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    CAS  Google Scholar 

  21. 21.

    Azarhoosh, P. et al. Research update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. APL Mater. 4, 091501 (2016).

    Google Scholar 

  22. 22.

    Zhu, X. & Podzorov, V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    CAS  Google Scholar 

  23. 23.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Google Scholar 

  24. 24.

    Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Google Scholar 

  25. 25.

    Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    CAS  Google Scholar 

  26. 26.

    Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx. Energy Environ. Sci. 7, 2269–2275 (2014).

    CAS  Google Scholar 

  27. 27.

    Dong, Q. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    CAS  Google Scholar 

  28. 28.

    Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford University Press, 2010).

  29. 29.

    Hendry, E., Koeberg, M., Pijpers, J. & Bonn, M. Reduction of carrier mobility in semiconductors caused by charge-charge interactions. Phys. Rev. B 75, 233202 (2007).

    Google Scholar 

  30. 30.

    Zhao, T., Shi, W., Xi, J., Wang, D. & Shuai, Z. Intrinsic and extrinsic charge transport in CH3NH3PbI3 perovskites predicted from first-principles. Sci. Rep. 6, 19968 (2016).

    Google Scholar 

  31. 31.

    Mante, P. A., Stoumpos, C. C., Kanatzidis, M. G. & Yartsev, A. Electron–acoustic phonon coupling in single crystal CH3NH3PbI3 perovskites revealed by coherent acoustic phonons. Nat. Commun. 8, 14398 (2017).

    CAS  Google Scholar 

  32. 32.

    He, Y. & Galli, G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26, 5394–5400 (2014).

    CAS  Google Scholar 

  33. 33.

    Wang, Y., Zhang, Y., Zhang, P. & Zhang, W. High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 11516–11520 (2015).

    CAS  Google Scholar 

  34. 34.

    Zhang, M., Zhang, X., Huang, L., Lin, H. & Lu, G. Charge transport in hybrid halide perovskites. Phys. Rev. B 96, 195203 (2017).

    Google Scholar 

  35. 35.

    Frost, J. M. Calculating polaron mobility in halide perovskites. Phys. Rev. B 96, 195202 (2017).

    Google Scholar 

  36. 36.

    Kawabata, A. Theory of negative magnetoresistance in three-dimensional systems. Solid State Commun. 34, 431–432 (1980).

    CAS  Google Scholar 

  37. 37.

    Lee, P. A. & Ramakrishnan, T. Disordered electronic systems. Rev. Mod. Phys. 57, 287 (1985).

    CAS  Google Scholar 

  38. 38.

    Kepenekian, M. & Even, J. Rashba and Dresselhaus couplings in halide perovskites: accomplishments and opportunities for spintronics and spin-orbitronics. J. Phys. Chem. Lett. 8, 3362–3370 (2017).

    CAS  Google Scholar 

  39. 39.

    Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Google Scholar 

  40. 40.

    Wang, Y., Shi, Y., Xin, G., Lian, J. & Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15, 4741–4749 (2015).

    CAS  Google Scholar 

  41. 41.

    Zhang, Q. et al. High-quality whispering‐gallery‐mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    CAS  Google Scholar 

  42. 42.

    Chen, J. et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017).

    CAS  Google Scholar 

  43. 43.

    Chen, J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139, 13525–13532 (2017).

    CAS  Google Scholar 

  44. 44.

    Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019).

    Google Scholar 

  45. 45.

    Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    CAS  Google Scholar 

Download references


We thank T. Atallah and J. Caram for discussions. X.D. acknowledges support by the Office of Naval Research through grant no. N00014-18-1-2707 for device fabrications and characterizations, and the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering through award DE-SC0018828 for materials growth. Y.H. acknowledges support by the National Science Foundation EFRI-1433541 for partial support of material preparation. Y. Z. acknowledges support by National Key Research and Development Program of China through grant no. 2018YFA0703503 and National Natural Science Foundation of China through grant no. 51991342 for materials characterizations. I.S. acknowledges the support by the International Scientific Partnership Program at King Saud University (ISPP-148). We acknowledge the Electron Imaging Center at UCLA for transmission electron microscopy technical support and the Nanoelectronics Research Facility at UCLA for device fabrication technical support.

Author information




X.D. conceived the research. X.D., Y.W., Q.Q., Z.W. and Y.L. designed the experiments. Y.W., Q.Q. and Z.W. performed the experiments and data analysis. Y.L. and J.G. contributed to device fabrications and initial electrical measurements. Z.K. and I.S. contributed to optical measurement and mobility discussions. Y.K.W. and C.L. conducted the X-ray diffraction measurements. Z.F. and Z.L. contributed to transmission electron microscopy characterizations. C.J. and P.W. helped to make the electrodes. M.G., X.D.D., Y.Z. and Y.H. contributed to discussions and supervised the research. X.D., Y.W. and Q.Q. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–3 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wan, Z., Qian, Q. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. (2020).

Download citation