Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Josephson phase battery


A classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. Similarly, a phase battery is a quantum device that provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on phase coherence. Here we demonstrate a phase battery in a hybrid superconducting circuit. It consists of an n-doped InAs nanowire with unpaired-spin surface states, that is proximitized by Al superconducting leads. We find that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias φ0 across the wire, leading to the anomalous Josephson effect1,2. We apply an external in-plane magnetic field and, thereby, achieve continuous tuning of φ0. Hence, we can charge and discharge the quantum phase battery. The observed symmetries of the anomalous Josephson effect in the vectorial magnetic field are in agreement with our theoretical model. Our results demonstrate how the combined action of spin–orbit coupling and exchange interaction induces a strong coupling between charge, spin and superconducting phase, able to break the phase rigidity of the system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Josephson phase-battery device.
Fig. 2: Charging loops of the Josephson phase battery.
Fig. 3: Vectorial symmetry of the anomalous phase φ0.

Data availability

The data that support the findings of this study are available from corresponding author E.S. upon reasonable request.

Code availability

The codes that support the findings of this study are available from corresponding author F.S.B. upon reasonable request.


  1. 1.

    Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ 0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Bergeret, F. S. & Tokatly, I. V. Theory of diffusive φ 0 Josephson junctions in the presence of spin-orbit coupling. EPL 110, 57005 (2015).

    Article  Google Scholar 

  3. 3.

    Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  4. 4.

    Golubov, A. A., Kupriyanov, M. Y. & Il’ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411–469 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Pal, S. & Benjamin, C. Quantized Josephson phase battery. EPL 126, 57002 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Yacoby, A., Schuster, R. & Heiblum, M. Phase rigidity and h/2e oscillations in a single-ring Aharonov-Bohm experiment. Phys. Rev. B 53, 9583–9586 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    Strambini, E., Piazza, V., Biasiol, G., Sorba, L. & Beltram, F. Impact of classical forces and decoherence in multiterminal Aharonov-Bohm networks. Phys. Rev. B 79, 195443 (2009).

    Article  Google Scholar 

  8. 8.

    Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Baek, B., Rippard, W. H., Benz, S. P., Russek, S. E. & Dresselhaus, P. D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 5, 3888 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Gingrich, E. C. et al. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve. Nat. Phys. 12, 564–567 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Silaev, M., Tokatly, I. & Bergeret, F. Anomalous current in diffusive ferromagnetic Josephson junctions. Phys. Rev. B 95, 184508 (2017).

    Article  Google Scholar 

  12. 12.

    Yokoyama, T. & Nazarov, Y. V. Magnetic anisotropy of critical current in nanowire Josephson junction with spin-orbit interaction. EPL 108, 47009 (2014).

    Article  Google Scholar 

  13. 13.

    Szombati, D. B. et al. Josephson φ 0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Assouline, A. et al. Spin-Orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 10, 126 (2019).

    Article  Google Scholar 

  15. 15.

    Mayer, W. et al. Gate controlled anomalous phase shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).

    CAS  Article  Google Scholar 

  16. 16.

    Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Giazotto, F. et al. A Josephson quantum electron pump. Nat. Phys. 7, 857–861 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley-VCH, 2004).

  19. 19.

    Sapkota, K. R., Maloney, F. S. & Wang, W. Observations of the Kondo effect and its coexistence with ferromagnetism in a magnetically undoped metal oxide nanostructure. Phys. Rev. B 97, 144425 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Dietl, T. & Ohno, H. Engineering magnetism in semiconductors. Mater. Today 9, 18–26 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    Golod, T., Rydh, A. & Krasnov, V. M. Detection of the phase shift from a single Abrikosov vortex. Phys. Rev. Lett. 104, 227003 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Pita-Vidal, M. et al. A gate-tunable, field-compatible fluxonium. Preprint at arXiv:1910.07978 (2019).

  23. 23.

    Larsen, T. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Guarcello, C. & Bergeret, F. Cryogenic memory element based on an anomalous Josephson junction. Phys. Rev. Appl. 13, 034012 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Spin-orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012).

    Article  Google Scholar 

  26. 26.

    Virtanen, P., Bergeret, F. S., Strambini, E., Giazotto, F. & Braggio, A. Majorana bound states in hybrid two-dimensional Josephson junctions with ferromagnetic insulators. Phys. Rev. B 98, 020501 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Tiira, J. et al. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions. Nat. Commun. 8, 14984 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Martelli, F. et al. Manganese-induced growth of GaAs nanowires. Nano Lett. 6, 2130–2134 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    Strambini, E. et al. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy. Phys. Rev. Mater. 1, 054402 (2017).

    Article  Google Scholar 

  30. 30.

    Liu, Y. et al. Semiconductor-ferromagnetic insulator-superconductor nanowires: stray field and exchange field. Nano Lett. 20, 456–462 (2020).

    CAS  Article  Google Scholar 

Download references


The work of E.S. was supported by a Marie Curie Individual Fellowship (MSCA-IFEF-ST no. 660532-SuperMag). E.S., N.L. and F.G. acknowledge partial financial support from the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant no. 615187-COMANCHE. E.S., A.I., O.D., N.L., F.S.B. and F.G. were partially supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 800923 (SUPERTED). L.S. and V.Z. acknowledge partial support by the SuperTop QuantERA network and the FET Open And QC. I.V.T., C.S.F. and F.S.B. acknowledge financial support by the Spanish Ministerio de Ciencia, Innovacion y Universidades through projects no. FIS2014-55987-P, no. FIS2016-79464-P and no. FIS2017-82804-P and by the grant ‘Grupos Consolidados UPV/EHU del Gobierno Vasco’ (grant no. IT1249-19). A.B. thanks the CNR-CONICET cooperation programme ‘Energy conversion in quantum nanoscale hybrid devices’; the SNS-WIS joint laboratory QUANTRA, funded by the Italian Ministry of Foreign Affairs and International Cooperation; and the Royal Society through the international exchanges between the United Kingdom and Italy (grant no. IEC R2192166).

Author information




E.S., A.I. and O.D. performed the experiment and analysed the data. R.C., C.S.F., C.G., I.V.T., A.B. and F.S.B. provided theoretical support. M.R., N.L. and O.D. fabricated the phase battery on the InAs nanowires grown by V.Z. and L.S.; E.S. conceived the experiment together with F.G., who supervised the project. E.S., A.I., I.V.T. and F.S.B. wrote the manuscript with feedback from all authors.

Corresponding authors

Correspondence to Elia Strambini or Andrea Iorio or F. Sebastián Bergeret or Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, discussion and refs. 1–18.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strambini, E., Iorio, A., Durante, O. et al. A Josephson phase battery. Nat. Nanotechnol. 15, 656–660 (2020).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research