Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The superconducting diode effect

Abstract

A superconducting diode enables supercurrent to flow in only one direction, providing new functionalities for superconducting circuits. In recent years, there has been experimental progress towards realizing such behaviour in both Josephson junctions and in junction-free superconductors. In this Review, we discuss experimental work and theoretical developments of the superconducting diode effect (SDE). We present the observation of the SDE including material realization, underlying symmetries, nature of spin–orbit interaction, band topology, device geometry and experimentally measured parameters, reflecting that nonreciprocity is presented. The theoretical work and fundamental mechanisms that lead to nonreciprocal current are discussed through the lens of symmetry breaking. The impact of the interplay between various system parameters on the efficiency or the SDE is highlighted. Finally, we provide our perspective towards the future directions in this active research field through an analysis of electric field tunability and the intertwining between band topology and superconductivity and how this could be useful to steer the engineering of emergent topological superconducting technologies.

Key points

  • A superconducting diode is a non-dissipative circuit element that envisions novel device applications in superconducting electronics, superconducting spintronics and quantum information and communication technology.

  • Unlike the conventional semiconducting diode effect in an electron–hole asymmetric junction, a superconducting diode effect can be realized in Josephson junctions as well as junction-free superconductors.

  • A superconducting diode is a quantum mechanical phenomenon induced by symmetry-driven transport and nontrivial functionalities of superconducting structures.

  • The efficiency of a superconducting diode is widely tunable using external parameters such as temperature, magnetic field, gating, device design and also quantum functionalities such as Berry phase, band topology and spin–orbit interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diode effect in semiconductors and superconductors.
Fig. 2: Mechanism of superconducting diode effect via Rashba spin–orbit interaction and magnetochiral anisotropy.
Fig. 3: Ising-type superconducting pairing symmetry.
Fig. 4: Temperature dependence and magnetic-field switching of superconducting diode effect.
Fig. 5: Momentum dependence of superconducting diode efficiency.

Similar content being viewed by others

References

  1. Scaff, J. & Ohl, R. Development of silicon crystal rectifiers for microwave radar receivers. Bell Syst. Tech. J. 26, 1–30 (1947).

    Google Scholar 

  2. Shockley, W. The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949).

    Google Scholar 

  3. Tinkham, M. Introduction to Superconductivity. Dover Books on Physics Series (Dover Publications, 2004).

  4. Braginski, A. I. Superconductor electronics: status and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).

    Google Scholar 

  5. Linder, J. & Robinson, J. W. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Google Scholar 

  6. Cai, R., Žutić, I. & Han, W. Superconductor/ferromagnet heterostructures: a platform for superconducting spintronics and quantum computation. Adv. Quantum Technol. 6, 2200080 (2023).

    Google Scholar 

  7. Wendin, G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017).

    ADS  MathSciNet  Google Scholar 

  8. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    ADS  Google Scholar 

  9. Kun, J. & Jiangping, H. Superconducting diode effects. Nat. Phys. 18, 1145–1146 (2022).

    Google Scholar 

  10. Toshiya, I. & Yoshihiro, I. One-way supercurrent achieved in an electrically polar film. Nature 584, 349–350 (2020).

    Google Scholar 

  11. Santamaria, J. Superconducting diodes with no magnetic field. Nat. Mater. 21, 999–1000 (2022).

    ADS  Google Scholar 

  12. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Google Scholar 

  13. Miyasaka, Y. et al. Observation of nonreciprocal superconducting critical field. Appl. Phys. Express 14, 073003 (2021).

    ADS  Google Scholar 

  14. Kawarazaki, R. et al. Magnetic-field-induced polarity oscillation of superconducting diode effect. Appl. Phys. Express 15, 113001 (2022).

    ADS  Google Scholar 

  15. Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).

    ADS  Google Scholar 

  16. Schumann, T. et al. Possible signatures of mixed-parity superconductivity in doped polar SrTio3 films. Phys. Rev. B 101, 100503 (2020).

    ADS  Google Scholar 

  17. Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022).

    ADS  Google Scholar 

  18. Masuko, M. et al. Nonreciprocal charge transport in topological superconductor candidate Bi2Te3/PdTe2 heterostructure. npj Quantum Mater. 7, 104 (2022).

    ADS  Google Scholar 

  19. Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

    Google Scholar 

  20. Scammell, H. D., Li, J. I. A. & Scheurer, M. S. Theory of zero-field superconducting diode effect in twisted trilayer graphene. 2D Mater. 9, 025027 (2022).

    Google Scholar 

  21. Du, W.-S. et al. Superconducting diode effect and large magnetochiral anisotropy in Td-MoTe2 thin film. Preprint at https://arxiv.org/abs/2303.09052 (2023).

  22. Cui, J. et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 10, 2044 (2019).

    ADS  MathSciNet  Google Scholar 

  23. Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    ADS  Google Scholar 

  24. Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. https://doi.org/10.1038/s41467-019-10658-3 (2019).

  25. Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

    ADS  Google Scholar 

  26. Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).

    ADS  Google Scholar 

  27. Taras, G. & Vladimir, M. K. Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity. Nat. Commun. 13, 3658 (2022).

    Google Scholar 

  28. Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

    ADS  Google Scholar 

  29. Lorenz, B. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer nbse2. Nat. Commun. 13, 4266 (2022).

    Google Scholar 

  30. Pal, B. et al. Josephson diode effect from cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).

    Google Scholar 

  31. de Vries, F. et al. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 16, 760–763 (2021).

    ADS  Google Scholar 

  32. Díez-Mérida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

    ADS  Google Scholar 

  33. Turini, B. et al. Josephson diode effect in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).

    ADS  Google Scholar 

  34. Chen, P. et al. Superconducting diode effect in inversion symmetry breaking MoTe2 Josephson junctions. Preprint at https://arxiv.org/abs/2303.07701 (2023).

  35. Chen, C.-Z. et al. Asymmetric Josephson effect in inversion symmetry breaking topological materials. Phys. Rev. B 98, 075430 (2018).

    ADS  Google Scholar 

  36. Lyu, Y.-Y. et al. Superconducting diode effect via conformal-mapped nanoholes. Nat. Commun. 12, 2703 (2021).

    ADS  Google Scholar 

  37. Strambini, E. et al. Superconducting spintronic tunnel diode. Nat. Commun. 13, 2431 (2022).

    ADS  Google Scholar 

  38. Geng, Z. et al. Superconductor-ferromagnet hybrids for non-reciprocal electronics and detectors. Preprint at https://arxiv.org/abs/2302.12732 (2023).

  39. Hooper, J. et al. Anomalous Josephson network in the Ru-Sr2RuO4 eutectic system. Phys. Rev. B 70, 014510 (2004).

    ADS  Google Scholar 

  40. Kaneyasu, H., Hayashi, N., Gut, B., Makoshi, K. & Sigrist, M. Phase transition in the 3-Kelvin phase of eutectic Sr2RuO4-Ru. J. Phys. Soc. Japan 79, 104705 (2010).

    ADS  Google Scholar 

  41. Zinkl, B., Hamamoto, K. & Sigrist, M. Symmetry conditions for the superconducting diode effect in chiral superconductors. Phys. Rev. Res. 4, 033167 (2022).

    Google Scholar 

  42. Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017).

    ADS  Google Scholar 

  43. Ideue, T. & Iwasa, Y. Symmetry breaking and nonlinear electric transport in van der Waals nanostructures. Annu. Rev. Condens. Matter Phys. 12, 201–223 (2021).

    ADS  Google Scholar 

  44. Bychkov, Y. A. & Rashba, É. I. Properties of a 2d electron gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  45. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580 (1955).

    ADS  MATH  Google Scholar 

  46. Trahms, M. et al. Diode effect in Josephson junctions with a single magnetic atom. Nature 615, 628–633 (2023).

    ADS  Google Scholar 

  47. Wu, Y. et al. Nonreciprocal charge transport in topological kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 105 (2022).

    ADS  Google Scholar 

  48. Sundaresh, A., Väyrynen, J. I., Lyanda-Geller, Y. & Rokhinson, L. P. Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors. Nat. Commun. 14, 1628 (2023).

    ADS  Google Scholar 

  49. Carapella, G., Granata, V., Russo, F. & Costabile, G. Bistable Abrikosov vortex diode made of a Py–Nb ferromagnet-superconductor bilayer structure. Appl. Phys. Lett. 94, 242504 (2009).

    ADS  Google Scholar 

  50. Carapella, G., Sabatino, P. & Costabile, G. Asymmetry, bistability, and vortex dynamics in a finite-geometry ferromagnet-superconductor bilayer structure. Phys. Rev. B 81, 054503 (2010).

    ADS  Google Scholar 

  51. Aladyshkin, A. Y., Fritzsche, J. & Moshchalkov, V. Planar superconductor/ferromagnet hybrids: anisotropy of resistivity induced by magnetic templates. Appl. Phys. Lett. 94, 222503 (2009).

    ADS  Google Scholar 

  52. Aladyshkin, A. Y., Vodolazov, D. Y., Fritzsche, J., Kramer, R. B. & Moshchalkov, V. Reverse-domain superconductivity in superconductor-ferromagnet hybrids: effect of a vortex-free channel on the symmetry of I–V characteristics. Appl. Phys. Lett. 97, 052501 (2010).

    ADS  Google Scholar 

  53. Alon, G. et al. Direct observation of a superconducting vortex diode. Nat. Commun. 14, 1630 (2023).

    ADS  Google Scholar 

  54. Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 131, 027001 (2023).

    ADS  Google Scholar 

  55. Matsui, H. et al. Nonreciprocal critical current in an obliquely ion-irradiated YBa2Cu3O7 film. Appl. Phys. Lett. 122, 172601 (2023).

    ADS  Google Scholar 

  56. Kealhofer, R., Jeong, H., Rashidi, A., Balents, L. & Stemmer, S. Anomalous superconducting diode effect in a polar superconductor. Phys. Rev. B 107, L100504 (2023).

    ADS  Google Scholar 

  57. Wakamura, T. et al. Gate-tunable giant superconducting nonreciprocal transport in few-layer Td-MoTe2. Preprint at https://arxiv.org/abs/2303.09747 (2023).

  58. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    ADS  Google Scholar 

  59. Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003).

    ADS  Google Scholar 

  60. Kopasov, A. A., Kutlin, A. G. & Mel’nikov, A. S. Geometry controlled superconducting diode and anomalous Josephson effect triggered by the topological phase transition in curved proximitized nanowires. Phys. Rev. B 103, 144520 (2021).

    ADS  Google Scholar 

  61. Dew-Hughes, D. The critical current of superconductors: an historical review. Low Temp. Phys. 27, 713–722 (2001).

    ADS  Google Scholar 

  62. Baumgartner, C. et al. Josephson inductance as a probe for highly ballistic semiconductor–superconductor weak links. Phys. Rev. Lett. 126, 037001 (2021).

    ADS  Google Scholar 

  63. Baumgartner, C. et al. Effect of Rashba and Dresselhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic Josephson junctions. J. Phys. Condens. Matter 34, 154005 (2022).

    ADS  Google Scholar 

  64. Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 128, 037001 (2022).

    ADS  Google Scholar 

  65. Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).

    MathSciNet  Google Scholar 

  66. He, J. J., Tanaka, Y. & Nagaosa, N. A phenomenological theory of superconductor diodes. New J. Phys. 24, 053014 (2022).

    ADS  Google Scholar 

  67. Ilić, S. & Bergeret, F. S. Theory of the supercurrent diode effect in Rashba superconductors with arbitrary disorder. Phys. Rev. Lett. 128, 177001 (2022).

    ADS  Google Scholar 

  68. Edel’shtein, V. Characteristics of the cooper pairing in two-dimensional noncentrosymmetric electron systems. Sov. Phys. JETP 68, 1244–1249 (1989).

    ADS  Google Scholar 

  69. Edelstein, V. M. Magnetoelectric effect in polar superconductors. Phys. Rev. Lett. 75, 2004–2007 (1995).

    ADS  Google Scholar 

  70. Edelstein, V. M. The Ginzburg–Landau equation for superconductors of polar symmetry. J. Phys. Condens. Matter 8, 339 (1996).

    ADS  Google Scholar 

  71. Zhai, B., Li, B., Wen, Y., Wu, F. & He, J. Prediction of ferroelectric superconductors with reversible superconducting diode effect. Phys. Rev. B 106, L140505 (2022).

    ADS  Google Scholar 

  72. Yuan, N. F. & Fu, L. Topological metals and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 118, e2019063118 (2021).

    MathSciNet  MATH  Google Scholar 

  73. Legg, H. F., Loss, D. & Klinovaja, J. Superconducting diode effect due to magnetochiral anisotropy in topological insulators and Rashba nanowires. Phys. Rev. B 106, 104501 (2022).

    ADS  Google Scholar 

  74. Takasan, K., Sumita, S. & Yanase, Y. Supercurrent-induced topological phase transitions. Phys. Rev. B 106, 014508 (2022).

    ADS  Google Scholar 

  75. Karabassov, T., Bobkova, I., Golubov, A. & Vasenko, A. Hybrid helical state and superconducting diode effect in superconductor/ferromagnet/topological insulator heterostructures. Phys. Rev. B 106, 224509 (2022).

    ADS  Google Scholar 

  76. Hu, J., Wu, C. & Dai, X. Proposed design of a Josephson diode. Phys. Rev. Lett. 99, 067004 (2007).

    ADS  Google Scholar 

  77. Davydova, M., Prembabu, S. & Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).

    Google Scholar 

  78. Zhang, Y., Gu, Y., Li, P., Hu, J. & Jiang, K. General theory of Josephson diodes. Phys. Rev. X 12, 041013 (2022).

    Google Scholar 

  79. Wei, Y.-J., Liu, H.-L., Wang, J. & Liu, J.-F. Supercurrent rectification effect in graphene-based Josephson junctions. Phys. Rev. B 106, 165419 (2022).

    ADS  Google Scholar 

  80. Pekerten, B., Pakizer, J. D., Hawn, B. & Matos-Abiague, A. Anisotropic topological superconductivity in Josephson junctions. Phys. Rev. B 105, 054504 (2022).

    ADS  Google Scholar 

  81. Tanaka, Y., Lu, B. & Nagaosa, N. Theory of giant diode effect in d-wave superconductor junctions on the surface of a topological insulator. Phys. Rev. B 106, 214524 (2022).

    ADS  Google Scholar 

  82. Kokkeler, T., Golubov, A. & Bergeret, F. Field-free anomalous junction and superconducting diode effect in spin-split superconductor/topological insulator junctions. Phys. Rev. B 106, 214504 (2022).

    ADS  Google Scholar 

  83. Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson current in junctions with spin polarizing quantum point contacts. Phys. Rev. Lett. 101, 107001 (2008).

    ADS  Google Scholar 

  84. Zazunov, A., Egger, R., Jonckheere, T. & Martin, T. Anomalous Josephson current through a spin–orbit coupled quantum dot. Phys. Rev. Lett. 103, 147004 (2009).

    ADS  Google Scholar 

  85. Margaris, I., Paltoglou, V. & Flytzanis, N. Zero phase difference supercurrent in ferromagnetic Josephson junctions. J. Phys. Condens. Matter 22, 445701 (2010).

    ADS  Google Scholar 

  86. Yokoyama, T., Eto, M. & Nazarov, Y. V. Anomalous Josephson effect induced by spin–orbit interaction and Zeeman effect in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014).

    ADS  Google Scholar 

  87. Campagnano, G., Lucignano, P., Giuliano, D. & Tagliacozzo, A. Spin–orbit coupling and anomalous Josephson effect in nanowires. J. Phys. Condens. Matter 27, 205301 (2015).

    ADS  Google Scholar 

  88. Minutillo, M., Giuliano, D., Lucignano, P., Tagliacozzo, A. & Campagnano, G. Anomalous Josephson effect in S/SO/F/S heterostructures. Phys. Rev. B 98, 144510 (2018).

    ADS  Google Scholar 

  89. Silaev, M. A., Aladyshkin, A. Y., Silaeva, M. V. & Aladyshkina, A. S. The diode effect induced by domain-wall superconductivity. J. Phys. Condens. Matter 26, 095702 (2014).

    Google Scholar 

  90. Pal, S. & Benjamin, C. Quantized Josephson phase battery. Europhys. Lett. 126, 57002 (2019).

    ADS  Google Scholar 

  91. Dolcini, F., Houzet, M. & Meyer, J. S. Topological Josephson ϕ0 junctions. Phys. Rev. B 92, 035428 (2015).

    ADS  Google Scholar 

  92. Dartiailh, M. C. et al. Phase signature of topological transition in Josephson junctions. Phys. Rev. Lett. 126, 036802 (2021).

    ADS  Google Scholar 

  93. Karabassov, T. et al. Superconducting diode effect in topological hybrid structures. Condens. Matter 8, 36 (2023).

    Google Scholar 

  94. Steiner, J. F., Melischek, L., Trahms, M., Franke, K. J. & von Oppen, F. Diode effects in current-biased Josephson junctions. Phys. Rev. Lett. 130, 177002 (2023).

    ADS  Google Scholar 

  95. Paolucci, F., De Simoni, G. & Giazotto, F. A gate-and flux-controlled supercurrent diode effect. Appl. Phys. Lett. 122, 042601 (2023).

    ADS  Google Scholar 

  96. Costa, A., Fabian, J. & Kochan, D. Microscopic study of the Josephson supercurrent diode effect in 2DEG-based Josephson junctions. Preprint at https://arxiv.org/abs/2303.14823 (2023).

  97. Kochan, D., Costa, A., Zhumagulov, I. & Žutić, I. Phenomenological theory of the supercurrent diode effect: the Lifshitz invariant. Preprint at https://arxiv.org/abs/2303.11975 (2023).

  98. Hu, J.-X., Sun, Z.-T., Xie, Y.-M. & Law, K. Josephson diode effect induced by valley polarization in twisted bilayer graphene. Phys. Rev. Lett. 130, 266003 (2023).

    ADS  Google Scholar 

  99. Alvarado, M., Burset, P. & Yeyati, A. L. Intrinsic non-magnetic ϕ0 Josephson junctions in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2303.07738 (2023).

  100. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    ADS  Google Scholar 

  101. Linder, J., Tanaka, Y., Yokoyama, T., Sudbø, A. & Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 104, 067001 (2010).

    ADS  Google Scholar 

  102. Legg, H. F., Laubscher, K., Loss, D. & Klinovaja, J. Parity protected superconducting diode effect in topological Josephson junctions. Preprint at https://arxiv.org/abs/2301.13740 (2023).

  103. Yoshinori, T. & Naoto, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Google Scholar 

  104. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    ADS  Google Scholar 

  105. Krstić, V., Roth, S., Burghard, M., Kern, K. & Rikken, G. L. J. A. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. J. Chem. Phys. 117, 11315–11319 (2002).

    ADS  Google Scholar 

  106. Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).

    ADS  Google Scholar 

  107. Rikken, G. L. J. A. & Wyder, P. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005).

    ADS  Google Scholar 

  108. Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016).

    ADS  Google Scholar 

  109. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Google Scholar 

  110. Wakatsuki, R. & Nagaosa, N. Nonreciprocal current in noncentrosymmetric Rashba superconductors. Phys. Rev. Lett. 121, 026601 (2018).

    ADS  Google Scholar 

  111. Hoshino, S., Wakatsuki, R., Hamamoto, K. & Nagaosa, N. Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors. Phys. Rev. B 98, 054510 (2018).

    ADS  Google Scholar 

  112. Choe, D. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 10, Choe19 (2019).

    ADS  Google Scholar 

  113. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931).

    ADS  MATH  Google Scholar 

  114. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12, 570–586 (1957).

    ADS  MathSciNet  Google Scholar 

  115. Wei, J. et al. Magnetic-field asymmetry of nonlinear transport in carbon nanotubes. Phys. Rev. Lett. 95, 256601 (2005).

    ADS  Google Scholar 

  116. Yokouchi, T. et al. Current-induced dynamics of skyrmion strings. Sci. Adv. 4, eaat1115 (2018).

    ADS  Google Scholar 

  117. Aoki, R., Kousaka, Y. & Togawa, Y. Anomalous nonreciprocal electrical transport on chiral magnetic order. Phys. Rev. Lett. 122, 057206 (2019).

    ADS  Google Scholar 

  118. Rikken, G. & Avarvari, N. Strong electrical magnetochiral anisotropy in tellurium. Phys. Rev. B 99, 245153 (2019).

    ADS  Google Scholar 

  119. Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).

    ADS  Google Scholar 

  120. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  121. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964).

    ADS  Google Scholar 

  122. Larkin, A. & Ovchinnikov, Y. N. Nonuniform state of superconductors. Sov. Phys. JETP 20, 762 (1965).

    Google Scholar 

  123. Amundsen, M., Linder, J., Robinson, J. W., Žutić, I. & Banerjee, N. Colloquium: spin–orbit effects in superconducting hybrid structures. Preprint at https://arxiv.org/abs/2210.03549 (2022).

  124. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006).

    ADS  Google Scholar 

  125. Halterman, K. & Valls, O. T. Emergence of triplet correlations in superconductor/half-metallic nanojunctions with spin-active interfaces. Phys. Rev. B 80, 104502 (2009).

    ADS  Google Scholar 

  126. Linder, J., Yokoyama, T. & Sudbø, A. Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces. Phys. Rev. B 79, 054523 (2009).

    ADS  Google Scholar 

  127. Khaire, T. S., Khasawneh, M. A., Pratt Jr, W. & Birge, N. O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    ADS  Google Scholar 

  128. Robinson, J., Witt, J. & Blamire, M. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    ADS  Google Scholar 

  129. Banerjee, N., Robinson, J. & Blamire, M. G. Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions. Nat. Commun. 5, 4771 (2014).

    ADS  Google Scholar 

  130. Feng, C. D., Zheng, Z. M., Ji, Y. Q., Niu, Z. P. & Xing, D. Origin of the spin-triplet Andreev reflection at ferromagnet/s-wave superconductor interface. J. Appl. Phys. 103, 023921 (2008).

    ADS  Google Scholar 

  131. Bergeret, F. & Tokatly, I. Singlet-triplet conversion and the long-range proximity effect in superconductor-ferromagnet structures with generic spin dependent fields. Phys. Rev. Lett. 110, 117003 (2013).

    ADS  Google Scholar 

  132. Bergeret, F. & Tokatly, I. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor–ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).

    ADS  Google Scholar 

  133. Högl, P., Matos-Abiague, A., Žutić, I. & Fabian, J. Magnetoanisotropic Andreev reflection in ferromagnet–superconductor junctions. Phys. Rev. Lett. 115, 116601 (2015).

    ADS  Google Scholar 

  134. Banerjee, N. et al. Controlling the superconducting transition by spin–orbit coupling. Phys. Rev. B 97, 184521 (2018).

    ADS  Google Scholar 

  135. Jeon, K.-R. et al. Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents. Nat. Mater. 17, 499–503 (2018).

    ADS  Google Scholar 

  136. Jeon, K.-R. et al. Tunable pure spin supercurrents and the demonstration of their gateability in a spin-wave device. Phys. Rev. X 10, 031020 (2020).

    Google Scholar 

  137. González-Ruano, C. et al. Superconductivity-induced change in magnetic anisotropy in epitaxial ferromagnet–superconductor hybrids with spin–orbit interaction. Phys. Rev. B 102, 020405 (2020).

    ADS  Google Scholar 

  138. Martínez, I. et al. Interfacial spin–orbit coupling: a platform for superconducting spintronics. Phys. Rev. Appl. 13, 014030 (2020).

    ADS  Google Scholar 

  139. Cai, R. et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat. Commun. 12, 6725 (2021).

    ADS  Google Scholar 

  140. Rasmussen, A. et al. Effects of spin–orbit coupling and spatial symmetries on the Josephson current in sns junctions. Phys. Rev. B 93, 155406 (2016).

    ADS  Google Scholar 

  141. Yi, H. et al. Crossover from Ising-to-Rashba-type superconductivity in epitaxial Bi2Se3/monolayer NbSe2 heterostructures. Nat. Mater. 21, 1366–1372 (2022).

    ADS  Google Scholar 

  142. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Google Scholar 

  143. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    Google Scholar 

  144. Yokoya, T. et al. Fermi surface sheet-dependent superconductivity in 2H-NbSe2. Science 294, 2518–2520 (2001).

    ADS  Google Scholar 

  145. Wang, M.-X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    ADS  Google Scholar 

  146. Xu, S.-Y. et al. Momentum-space imaging of cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).

    Google Scholar 

  147. Xu, J.-P. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014).

    ADS  Google Scholar 

  148. Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator–superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    ADS  Google Scholar 

  149. Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    ADS  Google Scholar 

  150. Zhu, Z. et al. Discovery of segmented Fermi surface induced by Cooper pair momentum. Science 374, 1381–1385 (2021).

    ADS  Google Scholar 

  151. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Google Scholar 

  152. Xing, Y. et al. Ising superconductivity and quantum phase transition in macro-size monolayer NbSe2. Nano Lett. 17, 6802–6807 (2017).

    ADS  Google Scholar 

  153. De la Barrera, S. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition–metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    ADS  Google Scholar 

  154. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    ADS  Google Scholar 

  155. Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    ADS  Google Scholar 

  156. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Google Scholar 

  157. Meissner, W. & Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften 21, 787–788 (1933).

    ADS  Google Scholar 

  158. Hart, S. et al. Controlled finite momentum pairing and spatially varying order parameter in proximitized HgTe quantum wells. Nat. Phys. 13, 87–93 (2017).

    Google Scholar 

  159. Yuan, N. F. & Fu, L. Zeeman-induced gapless superconductivity with a partial Fermi surface. Phys. Rev. B 97, 115139 (2018).

    ADS  Google Scholar 

  160. Chen, A. Q. et al. Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions. Nat. Commun. 9, 3478 (2018).

    ADS  Google Scholar 

  161. Ghosh, B. et al. Observation of bulk states and spin-polarized topological surface states in transition metal dichalcogenide Dirac semimetal candidate NiTe2. Phys. Rev. B 100, 195134 (2019).

    ADS  Google Scholar 

  162. Mukherjee, S. et al. Fermi-crossing type-II Dirac fermions and topological surface states in NiTe2. Sci. Rep. 10, 12957 (2020).

    ADS  Google Scholar 

  163. Clark, O. et al. Fermiology and superconductivity of topological surface states in PdTe2. Phys. Rev. Lett. 120, 156401 (2018).

    ADS  Google Scholar 

  164. von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590 (1981).

    ADS  Google Scholar 

  165. Sipe, J. & Shkrebtii, A. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337 (2000).

    ADS  Google Scholar 

  166. Nagaosa, N. & Morimoto, T. Concept of quantum geometry in optoelectronic processes in solids: application to solar cells. Adv. Mater. 29, 1603345 (2017).

    Google Scholar 

  167. Morimoto, T. & Nagaosa, N. Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation. Sci. Rep. 8, 1–16 (2018).

    Google Scholar 

  168. Misaki, K. & Nagaosa, N. Theory of the nonreciprocal Josephson effect. Phys. Rev. B 103, 245302 (2021).

    ADS  Google Scholar 

  169. Itahashi, Y. M. et al. Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor. Nat. Commun. 13, 1659 (2022).

    ADS  Google Scholar 

  170. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  171. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    ADS  Google Scholar 

  172. Côté, D., Laman, N. V. & Van Driel, H. Rectification and shift currents in GaAs. Appl. Phys. Lett. 80, 905–907 (2002).

    ADS  Google Scholar 

  173. Ogawa, N., Sotome, M., Kaneko, Y., Ogino, M. & Tokura, Y. Shift current in the ferroelectric semiconductor SbSI. Phys. Rev. B 96, 241203 (2017).

    ADS  Google Scholar 

  174. Kim, K. W., Morimoto, T. & Nagaosa, N. Shift charge and spin photocurrents in Dirac surface states of topological insulator. Phys. Rev. B 95, 035134 (2017).

    ADS  Google Scholar 

  175. Houzet, M. & Meyer, J. S. Quasiclassical theory of disordered Rashba superconductors. Phys. Rev. B 92, 014509 (2015).

    ADS  Google Scholar 

  176. Daido, A. & Yanase, Y. Superconducting diode effect and nonreciprocal transition lines. Phys. Rev. B 106, 205206 (2022).

    ADS  Google Scholar 

  177. Bezuglyi, E., Rozhavsky, A., Vagner, I. & Wyder, P. Combined effect of Zeeman splitting and spin–orbit interaction on the Josephson current in a superconductor–two-dimensional electron gas–superconductor structure. Phys. Rev. B 66, 052508 (2002).

    ADS  Google Scholar 

  178. Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ 0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    ADS  Google Scholar 

  179. Tanaka, Y., Yokoyama, T. & Nagaosa, N. Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009).

    ADS  Google Scholar 

  180. Liu, J.-F. & Chan, K. S. Relation between symmetry breaking and the anomalous Josephson effect. Phys. Rev. B 82, 125305 (2010).

    ADS  Google Scholar 

  181. Liu, J.-F., Sum Chan, K. & Wang, J. Anomalous Josephson current through a ferromagnet–semiconductor hybrid structure. J. Phys. Soc. Japan 80, 124708 (2011).

    ADS  Google Scholar 

  182. Reynoso, A. A., Usaj, G., Balseiro, C., Feinberg, D. & Avignon, M. Spin–orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012).

    ADS  Google Scholar 

  183. Yokoyama, T., Eto, M. & V. Nazarov, Y. Josephson current through semiconductor nanowire with spin–orbit interaction in magnetic field. J. Phys. Soc. Japan 82, 054703 (2013).

    ADS  Google Scholar 

  184. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    ADS  Google Scholar 

  185. Konschelle, F., Tokatly, I. V. & Bergeret, F. S. Theory of the spin-galvanic effect and the anomalous phase shift φ 0 in superconductors and Josephson junctions with intrinsic spin–orbit coupling. Phys. Rev. B 92, 125443 (2015).

    ADS  Google Scholar 

  186. Lu, B., Yada, K., Golubov, A. A. & Tanaka, Y. Anomalous Josephson effect in d-wave superconductor junctions on a topological insulator surface. Phys. Rev. B 92, 100503 (2015).

    ADS  Google Scholar 

  187. Sochnikov, I. et al. Nonsinusoidal current–phase relationship in Josephson junctions from the 3D topological insulator HgTe. Phys. Rev. Lett. 114, 066801 (2015).

    ADS  Google Scholar 

  188. Szombati, D. et al. Josephson ϕ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).

    Google Scholar 

  189. Assouline, A. et al. Spin–orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 10, 126 (2019).

    ADS  Google Scholar 

  190. Ren, H. et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 569, 93–98 (2019).

    ADS  Google Scholar 

  191. Mayer, W. et al. Gate controlled anomalous phase shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).

    ADS  Google Scholar 

  192. Kayyalha, M. et al. Highly skewed current–phase relation in superconductor–topological insulator–superconductor Josephson junctions. npj Quantum Mater. 5, 7 (2020).

    ADS  Google Scholar 

  193. Strambini, E. et al. A Josephson phase battery. Nat. Nanotechnol. 15, 656–660 (2020).

    ADS  Google Scholar 

  194. Yip, S. Weak link between conventional and unconventional superconductors. J. Low Temp. Phys. 91, 203–218 (1993).

    ADS  Google Scholar 

  195. Tanaka, Y. & Kashiwaya, S. Theory of the Josephson effect in d-wave superconductors. Phys. Rev. B 53, R11957–R11960 (1996).

    ADS  Google Scholar 

  196. Linder, J., Tanaka, Y., Yokoyama, T., Sudbø, A. & Nagaosa, N. Interplay between superconductivity and ferromagnetism on a topological insulator. Phys. Rev. B 81, 184525 (2010).

    ADS  Google Scholar 

  197. Gupta, M. et al. Gate-tunable superconducting diode effect in a three-terminal Josephson device. Nat. Commun. 14, 3078 (2023).

    ADS  Google Scholar 

  198. Haenel, R. & Can, O. Superconducting diode from flux biased Josephson junction arrays. Preprint at https://arxiv.org/abs/2212.02657 (2022).

  199. Sanchez-Manzano, D. et al. Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet. Nat. Mater. 21, 188–194 (2022).

    ADS  Google Scholar 

  200. Halterman, K., Alidoust, M., Smith, R. & Starr, S. Supercurrent diode effect, spin torques, and robust zero-energy peak in planar half-metallic trilayers. Phys. Rev. B 105, 104508 (2022).

    ADS  Google Scholar 

  201. Wang, X. L. Proposal for a new class of materials: spin gapless semiconductors. Phys. Rev. Lett. 100, 156404 (2008).

    ADS  Google Scholar 

  202. Wang, X.-L. Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects. Natl Sci. Rev. 4, 252–257 (2016).

    Google Scholar 

  203. Wang, X.-L., Dou, S. & Zhang, C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater. 2, 31–38 (2010).

    Google Scholar 

  204. Yue, Z., Li, Z., Sang, L. & Wang, X. Spin-gapless semiconductors. Small 16, 1905155 (2020).

    Google Scholar 

  205. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Google Scholar 

  206. Shabbir, B. et al. Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies. Appl. Phys. Rev. 5, 041105 (2018).

    ADS  Google Scholar 

  207. Nadeem, M., Hamilton, A. R., Fuhrer, M. S. & Wang, X. Quantum anomalous Hall effect in magnetic doped topological insulators and ferromagnetic spin-gapless semiconductors — a perspective review. Small 16, 1904322 (2020).

    Google Scholar 

  208. Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: quantum anomalous hall effect. Rev. Mod. Phys. 95, 011002 (2023).

    ADS  Google Scholar 

  209. Sang, L. et al. Majorana zero modes in iron-based superconductors. Matter 5, 1734–1759 (2022).

    Google Scholar 

  210. Tian, J., Zuber, J., Huang, S. & Zhang, C. Superconducting pair-breaking under intense sub-gap terahertz radiation. Appl. Phys. Lett. 114, 212601 (2019).

    ADS  Google Scholar 

  211. Rocci, M. et al. Large enhancement of critical current in superconducting devices by gate voltage. Nano Lett. 21, 216–221 (2021).

    ADS  Google Scholar 

  212. Liu, P., Lei, B., Chen, X., Wang, L. & Wang, X. Superior carrier tuning in ultrathin superconducting materials by electric-field gating. Nat. Rev. Phys. 4, 336–352 (2022).

    Google Scholar 

  213. Piatti, E. Ionic gating in metallic superconductors: a brief review. Nano Express 2, 024003 (2021).

    ADS  Google Scholar 

  214. Nadeem, M. Two-Dimensional Topological Insulators for Dissipationless Topological Electronics and Spintronics Technologies. Doctor of philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong https://ro.uow.edu.au/theses1/1143 (2021).

  215. Nadeem, M., Di Bernardo, I., Wang, X., Fuhrer, M. S. & Culcer, D. Overcoming Boltzmann’s tyranny in a transistor via the topological quantum field effect. Nano Lett. 21, 3155–3161 (2021).

    ADS  Google Scholar 

  216. Nadeem, M. et al. Optimizing topological switching in confined 2D-Xene nanoribbons via finite-size effects. Appl. Phys. Rev. 9, 011411 (2022).

    ADS  Google Scholar 

  217. Fuhrer, M. et al. Proposal for a negative capacitance topological quantum field-effect transistor. In 2021 IEEE International Electron Devices Meeting (IEDM), 38.2.1–38.2.4 (IEEE, 2021).

Download references

Acknowledgements

This research is supported by the Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET Project No. CE170100039). We sincerely thank C. Foley, the Chief Scientist at Australia’s National Science Agency CSIRO and Chief Scientist of Australia, for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Muhammad Nadeem or Xiaolin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Jiangping Hu and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, M., Fuhrer, M.S. & Wang, X. The superconducting diode effect. Nat Rev Phys 5, 558–577 (2023). https://doi.org/10.1038/s42254-023-00632-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00632-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing