Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotechnology intervention of the microbiome for cancer therapy


The microbiome is emerging as a key player and driver of cancer. Traditional modalities to manipulate the microbiome (for example, antibiotics, probiotics and microbiota transplants) have been shown to improve efficacy of cancer therapies in some cases, but issues such as collateral damage to the commensal microbiota and consistency of these approaches motivates efforts towards developing new technologies specifically designed for the microbiome–cancer interface. Considering the success of nanotechnology in transforming cancer diagnostics and treatment, nanotechnologies capable of manipulating interactions that occur across microscopic and molecular length scales in the microbiome and the tumour microenvironment have the potential to provide innovative strategies for cancer treatment. As such, opportunities at the intersection of nanotechnology, the microbiome and cancer are massive. In this Review, we highlight key opportunistic areas for applying nanotechnologies towards manipulating the microbiome for the treatment of cancer, give an overview of seminal work and discuss future challenges and our perspective on this emerging area.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The role of bacteria and the microbiome in the tumour microenvironment.
Fig. 2: The current nanotechnology toolbox can be applied for microbiome intervention strategies.
Fig. 3: Nanotechnology to interfere with microbiome signals/metabolites.
Fig. 4: Examples of nanotechnology that manipulate or respond to microbiome signals/metabolites.
Fig. 5: Nanotechnology strategies for microbiome modulation.
Fig. 6: Examples of nanotechnologies used for microbiome modulation.
Fig. 7: Microbe-inspired nanotechnologies.
Fig. 8: Examples of microbe- or microbiome-inspired nanotechnologies.


  1. 1.

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019). A recent review discussing the influence of gut microbiota on cancer therapy and current approaches targeting gut microbiome for cancer therapy.

    CAS  Article  Google Scholar 

  3. 3.

    Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800 (2013). An article that summarizes the links between bacterial microbiota and cancer, many of the driving mechanisms, and strategies that involve targeting the microbiome for cancer prevention.

    CAS  Article  Google Scholar 

  4. 4.

    Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 4, 688 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Bhatt, A. P., Redinbo, M. R. & Bultman, S. J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017).

    Article  Google Scholar 

  8. 8.

    Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017). This paper demonstrated that Fusobacterium and its associated microbiome is maintained in distal metastases and motivates the need to target TAB.

    CAS  Article  Google Scholar 

  9. 9.

    Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806e712 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29, 1437–1444 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Geller, L. T. et al. Potential role of intratumour bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20, e7–e91 (2019).

    Article  Google Scholar 

  19. 19.

    Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer cell 33, 570–580 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Young, V. B. Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin. Microbiol. Infect. 22, 905–909 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: Current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018).

    Article  Google Scholar 

  22. 22.

    Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics—advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Jobin, C. Precision medicine using microbiota. Science 359, 32–34 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article  Google Scholar 

  25. 25.

    Li, S.-D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharmaceut. 5, 496–504 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Owens, D. E. III & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  28. 28.

    Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 4, e10143 (2019).

    Google Scholar 

  30. 30.

    Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol. 2, 751–760 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Ma, L., Kohli, M. & Smith, A. Nanoparticles for combination drug therapy. ACS nano 7, 9518–9525 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Moon, J. J., Huang, B. & Irvine, D. J. Engineering nano‐and microparticles to tune immunity. Adv. Mater. 24, 3724–3746 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnol. 33, 941–951 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Rodriguez, P. L. et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Albanese, A., Tang, P. S. & Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Hua, S., Marks, E., Schneider, J. J. & Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: NBM 11, 1117–1132 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Jin, K., Luo, Z., Zhang, B. & Pang, Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm. Sin. B 8, 23–33 (2018).

    Article  Google Scholar 

  43. 43.

    Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Angsantikul, P. et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. (Weinh) 1, 1800016 (2018). This manuscript describes a strategy that facilitates antibiotic delivery to specific bacteria via a targeted nanotechnology.

    Article  CAS  Google Scholar 

  45. 45.

    Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).

    CAS  Article  Google Scholar 

  47. 47.

    Poon, Z., Chang, D., Zhao, X. & Hammond, P. T. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumour hypoxia. ACS nano 5, 4284–4292 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    Song, W. et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9, 2237 (2018).

    Article  CAS  Google Scholar 

  49. 49.

    Hu, S. et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PloS one 6, e16221 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26, 110–130 (2017). A comprehensive review that discusses how microbial metabolites affect the host immune system, thereby highlighting a multitude of targets for manipulation of microbiome signals.

    CAS  Article  Google Scholar 

  51. 51.

    Song, W. T. et al. Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis. Adv. Mater. 30, 1805007 (2018). In this study, a nanotechnology was used to block signals from the gut microbiome to facilitate and enhance cancer immunotherapy.

    Article  CAS  Google Scholar 

  52. 52.

    Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer cell 21, 504–516 (2012).

    CAS  Article  Google Scholar 

  53. 53.

    Goodwin, T. J., Zhou, Y., Musetti, S. N., Liu, R. & Huang, L. Local and transient gene expression primes the liver to resist cancer metastasis. Sci. Transl. Med. 8, 364ra153 (2016).

    Article  CAS  Google Scholar 

  54. 54.

    Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    CAS  Article  Google Scholar 

  56. 56.

    Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Xiong, M.-H. et al. Differential anticancer drug delivery with a nanogel sensitive to bacteria-accumulated tumor artificial environment. ACS Nano 7, 10636–10645 (2013). This study provides an approach for using bacterial metabolism in TAB as a signal for triggering drug release from nanoparticles for selectively killing cancer cells.

    CAS  Article  Google Scholar 

  58. 58.

    Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    CAS  Article  Google Scholar 

  59. 59.

    Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320 (2012).

    CAS  Article  Google Scholar 

  60. 60.

    Antimicrobial Resistance: Global Report on Surveillance (World Health Organization, 2014).

  61. 61.

    Vangay, P., Ward, T., Gerber, J. S. & Knights, D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17, 553–564 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    Francescone, R., Hou, V. & Grivennikov, S. I. Microbiome, inflammation and cancer. Cancer J. 20, 181–189 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Wu, N. et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb. Ecol. 66, 462–470 (2013).

    CAS  Article  Google Scholar 

  64. 64.

    Ramteke, S., Ganesh, N., Bhattacharya, S. & Jain, N. K. Amoxicillin, clarithromycin, and omeprazole based targeted nanoparticles for the treatment of H. pylori. J. Drug Target 17, 225–234 (2009).

    CAS  Article  Google Scholar 

  65. 65.

    Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 532–547 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Vargas-Reus, M. A., Memarzadeh, K., Huang, J., Ren, G. G. & Allaker, R. P. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int. J. Antimicrob. Agents 40, 135–139 (2012).

    CAS  Article  Google Scholar 

  67. 67.

    Lu, Z., Rong, K., Li, J., Yang, H. & Chen, R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med. 24, 1465–1471 (2013).

    CAS  Article  Google Scholar 

  68. 68.

    Hajipour, M. J. et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012).

    CAS  Article  Google Scholar 

  69. 69.

    Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Brit. J. Nutr. 104, S1–S63 (2010).

    CAS  Article  Google Scholar 

  70. 70.

    Kutter, E. et al. Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol. 11, 69–86 (2010).

    CAS  Article  Google Scholar 

  71. 71.

    Zheng, D.-W. et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3, 717–728 (2019). This study describes a phage-primed approach for targeting nanoparticles to microbiota burdened tumours and outlines a possible workflow in developing personalized nanotechnologies against TAB.

    CAS  Article  Google Scholar 

  72. 72.

    Wu, W., Yang, Y. & Sun, G. Recent insights into antibiotic resistance in Helicobacter pylori eradication. Gastroenterol. Res. Pract. (2012).

    Article  Google Scholar 

  73. 73.

    Nyfors, S., Könönen, E., Syrjänen, R., Komulainen, E. & Jousimies-Somer, H. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J. Antimicrob. Chemother. 51, 107–112 (2003).

    CAS  Article  Google Scholar 

  74. 74.

    Tenover, F. C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119, S3–S10 (2006).

    CAS  Article  Google Scholar 

  75. 75.

    Li, P., Li, J., Wu, C., Wu, Q. & Li, J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912 (2005).

    CAS  Article  Google Scholar 

  76. 76.

    Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168 (1999).

    CAS  Article  Google Scholar 

  77. 77.

    Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra284 (2015).

    Article  CAS  Google Scholar 

  78. 78.

    Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785 (2010).

    CAS  Article  Google Scholar 

  79. 79.

    Akin, D. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnol. 2, 441 (2007).

    CAS  Article  Google Scholar 

  80. 80.

    Hu, Q. et al. Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy. Nano Lett. 15, 2732–2739 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Fan, J.-X. et al. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 18, 2373–2380 (2018).

    CAS  Article  Google Scholar 

  82. 82.

    Hosseinidoust, Z. et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev. 106, 27–44 (2016).

    CAS  Article  Google Scholar 

  83. 83.

    Song, Q. et al. A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Adv. Mater. 31, 1903793 (2019). This manuscript describes an approach utilizing natural functions of spore forming bacteria to autonomously produce nanoparticles in the intestine.

    CAS  Article  Google Scholar 

  84. 84.

    Schuerle, S. et al. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci. Adv. 5, eaav4803 (2019). This study develops a bacteria-inspired approach for improving nanoparticle delivery across tumour barriers using a microfabricated technology that mimics the collective behaviour of microbe communities.

    CAS  Article  Google Scholar 

  85. 85.

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Qiu, K., Durham, P. G. & Anselmo, A. C. Inorganic nanoparticles and the microbiome. Nano Res. 11, 4936–4954 (2018).

    CAS  Article  Google Scholar 

  87. 87.

    Pietroiusti, A., Magrini, A. & Campagnolo, L. New frontiers in nanotoxicology: gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol. Appl. Pharmacol. 299, 90–95 (2016).

    CAS  Article  Google Scholar 

  88. 88.

    McClements, D. J. & Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci. Food 1, 6 (2017).

    Article  Google Scholar 

  89. 89.

    Bouwmeester, H., van der Zande, M. & Jepson, M. A. Effects of food‐borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1481 (2018).

    Article  CAS  Google Scholar 

  90. 90.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  Article  Google Scholar 

  91. 91.

    Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    CAS  Article  Google Scholar 

  92. 92.

    Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580 (2008).

    CAS  Article  Google Scholar 

  93. 93.

    Sanvicens, N., Pastells, C., Pascual, N. & Marco, M.-P. Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Analyt. Chem. 28, 1243–1252 (2009).

    CAS  Article  Google Scholar 

  94. 94.

    De Luca, F. & Shoenfeld, Y. The microbiome in autoimmune diseases. Clin. Exp. Immunol. 195, 74–85 (2019).

    Article  CAS  Google Scholar 

  95. 95.

    Li, B., Selmi, C., Tang, R., Gershwin, M. E. & Ma, X. The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cell. Mol. Immunol. 15, 595–609 (2018).

    Article  CAS  Google Scholar 

  96. 96.

    Rogers, G. B. et al. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21, 738–748 (2016).

    CAS  Article  Google Scholar 

  97. 97.

    Griffiths, J. A. & Mazmanian, S. K. Emerging evidence linking the gut microbiome to neurologic disorders. Genome Med. 10, 98 (2018).

    CAS  Article  Google Scholar 

  98. 98.

    Hansen, J. J. & Sartor, R. B. Therapeutic manipulation of the microbiome in IBD: current results and future approaches. Curr. Treat. Options. Gastroenterol. 13, 105–120 (2015).

    Article  Google Scholar 

  99. 99.

    Lee, Y. et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. (2019).

Download references


W.S. would like to acknowledge support from the National Natural Science Foundation of China (51673185, 51973215). A.C.A. would like to acknowledge support from the Carolina Center of Cancer Nanotechnology Excellence (C-CCNE) Pilot Grant Program supported by the National Institutes of Health (NIH) National Cancer Institute (5U54CA198999-04). L.H. is supported by NIH grant CA198999.

Author information



Corresponding authors

Correspondence to Aaron C. Anselmo or Leaf Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, W., Anselmo, A.C. & Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 14, 1093–1103 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research