Soft biomimetic nanoconfinement promotes amorphous water over ice

Abstract

Water is a ubiquitous liquid with unique physicochemical properties, whose nature has shaped our planet and life as we know it. Water in restricted geometries has different properties than in bulk. Confinement can prevent low-temperature crystallization of the molecules into a hexagonal structure and thus create a state of amorphous water. To understand the survival of life at subzero temperatures, it is essential to elucidate this behaviour in the presence of nanoconfining lipidic membranes. Here we introduce a family of synthetic lipids with designed cyclopropyl modifications in the hydrophobic chains that exhibit unique liquid-crystalline behaviour at low temperature, which enables the maintenance of amorphous water down to ~10 K due to nanoconfinement. The combination of experiments and molecular dynamics simulations unveils a complex lipid–water phase diagram in which bicontinuous cubic and lamellar liquid crystalline phases that contain subzero liquid, glassy or ice water emerge as a competition between the two components, each pushing towards its thermodynamically favoured state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Phase diagrams of cyclopropanated monoacylglycerols MLB and DCPML.
Fig. 2: Low-temperature phase studies of water confined in DCPML mesophases.
Fig. 3: Low-temperature phase diagram of the water and DCPML lipidic phase.
Fig. 4: Molecular dynamics simulations of water and ice under confinement.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Chakraborty, S., Kumar, H., Dasgupta, C. & Maiti, P. K. Confined water: structure, dynamics, and thermodynamics. Acc. Chem. Res. 50, 2139–2146 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Kumar, P., Buldyrev, S. V., Starr, F. W., Giovambattista, N. & Stanley, H. E. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys. Rev. E 72, 051503 (2005).

    Article  Google Scholar 

  3. 3.

    Levinger, N. E. Water in confinement. Science 298, 1722–1723 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Chiavazzo, E., Fasano, M., Asinari, P. & Decuzzi, P. Scaling behaviour for the water transport in nanoconfined geometries. Nat. Commun. 5, 4565 (2014).

    Article  Google Scholar 

  6. 6.

    Hande, V. R. & Chakrabarty, S. Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys. Chem. Chem. Phys. 18, 21767–21779 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Moilanen, D. E., Levinger, N. E., Spry, D. B. & Fayer, M. D. Confinement or the nature of the interface? Dynamics of nanoscopic water. J. Am. Chem. Soc. 129, 14311–14318 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Findenegg, G. H., Jahnert, S., Akcakayiran, D. & Schreiber, A. Freezing and melting of water confined in silica nanopores. Chem. Phys. Chem. 9, 2651–2659 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Cerveny, S., Mallamace, F., Swenson, J., Vogel, M. & Xu, L. M. Confined water as model of supercooled water. Chem. Rev. 116, 7608–7625 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Bergman, R. & Swenson, J. Dynamics of supercooled water in confined geometry. Nature 403, 283–286 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    Venables, D. S., Huang, K. & Schmuttenmaer, C. A. Effect of reverse micelle size on the librational band of confined water and methanol. J. Phys. Chem. B 105, 9132–9138 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Swenson, J., Kargl, F., Berntsen, P. & Svanberg, C. Solvent and lipid dynamics of hydrated lipid bilayers by incoherent quasielastic neutron scattering. J. Chem. Phys. 129, 045101 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Miskowiec, A. et al. On the structure and dynamics of water associated with single-supported zwitterionic and anionic membranes. J. Chem. Phys. 146, 125102 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Kim, J. et al. Ultrafast hydration dynamics in the lipidic cubic phase: discrete water structures in nanochannels. J. Phys. Chem. B 110, 21994–22000 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Wachter, W., Trimmel, G., Buchner, R. & Glatter, O. Dynamics of water confined in self-assembled monoglyceride–water–oil phases. Soft Matter 7, 1409–1417 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Qiu, H. & Caffrey, M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223–234 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Kulkarni, C. V. et al. Engineering bicontinuous cubic structures at the nanoscale—the role of chain splay. Soft Matter 6, 3191–3194 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Hyde, S. T. Bicontinuous structures in lyotropic liquid crystals and crystalline hyperbolic surfaces. Curr. Opin. Solid State Mater. Sci. 1, 653–662 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    Seddon, J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase-transitions of lipids. Biochim. Biophys. Acta 1031, 1–69 (1990).

    CAS  Article  Google Scholar 

  21. 21.

    Kulkarni, C. V., Wachter, W., Iglesias-Salto, G., Engelskirchen, S. & Ahualli, S. Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 13, 3004–3021 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Fong, W. K., Negrini, R., Vallooran, J. J., Mezzenga, R. & Boyd, B. J. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci. 484, 320–339 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Duss, M. et al. Lipidic mesophases as novel nanoreactor scaffolds for organocatalysts: heterogeneously catalyzed asymmetric aldol reactions in confined water. ACS Appl. Mater. Interfaces 10, 5114–5124 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Speziale, C., Salvati Manni, L., Manatschal, C., Landau, E. M. & Mezzenga, R. A macroscopic H+ and Cl ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases. Proc. Natl Acad. Sci. USA 113, 7491–7496 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Luzzati, V. & Husson, F. The structure of the liquid-crystalline phasis of lipid–water systems. J. Cell Biol. 12, 207–219 (1962).

    CAS  Article  Google Scholar 

  28. 28.

    Salvati Manni, L. et al. Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low-temperature membrane protein crystallization. Angew. Chem. Int. Ed. 54, 1027–1031 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Rao, V., Fujiwara, N., Porcelli, S. A. & Glickman, M. S. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med. 201, 535–543 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Fong, C., Le, T. & Drummond, C. J. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem. Soc. Rev. 41, 1297–1322 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Sagnella, S. M. et al. Ordered nanostructured amphiphile self-assembly materials from endogenous nonionic unsaturated monoethanolamide lipids in water. Langmuir 26, 3084–3094 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Negrini, R. & Mezzenga, R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 27, 5296–5303 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Nakano, M. et al. Dispersions of liquid crystalline phases of the monoolein/oleic acid/Pluronic F127 system. Langmuir 18, 9283–9288 (2002).

    CAS  Article  Google Scholar 

  34. 34.

    Engstrom, S., Wadsten-Hindrichsen, P. & Hernius, B. Cubic, sponge, and lamellar phases in the glyceryl monooleyl ether–propylene glycol–water system. Langmuir 23, 10020–10025 (2007).

    Article  Google Scholar 

  35. 35.

    Phan, S., Fong, W. K., Kirby, N., Hanley, T. & Boyd, B. J. Evaluating the link between self-assembled mesophase structure and drug release. Int. J. Pharmaceut. 421, 176–182 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Nguyen, T. H., Hanley, T., Porter, C. J. & Boyd, B. J. Nanostructured reverse hexagonal liquid crystals sustain plasma concentrations for a poorly water-soluble drug after oral administration. Drug Deliv. Transl. Res. 1, 429–438 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Zabara, A., Negrini, R., Baumann, P., Onaca-Fischer, O. & Mezzenga, R. Reconstitution of OmpF membrane protein on bended lipid bilayers: perforated hexagonal mesophases. Chem. Commun. 50, 2642–2645 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Moore, E. B., de la Llave, E., Welke, K., Scherlis, D. A. & Molinero, V. Freezing, melting and structure of ice in a hydrophilic nanopore. Phys. Chem. Chem. Phys. 12, 4124–4134 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Osti, N. C. et al. Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering. Chem. Phys. 465, 1–8 (2016).

    Article  Google Scholar 

  40. 40.

    Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Moore, E. B. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–U226 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Moore, E. B., Allen, J. T. & Molinero, V. Liquid–ice coexistence below the melting temperature for water confined in hydrophilic and hydrophobic nanopores. J. Phys. Chem. C 116, 7507–7514 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    García Fernández, R., Abascal, J. L. & Vega, C. The melting point of ice I h for common water models calculated from direct coexistence of the solid–liquid interface. J. Chem. Phys. 124, 144506 (2006).

    Article  Google Scholar 

  44. 44.

    Assenza, S. & Mezzenga, R. Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases. J. Chem. Phys. 148, 054902 (2018).

    Article  Google Scholar 

  45. 45.

    Lee, W. B., Mezzenga, R. & Fredrickson, G. H. Anomalous phase sequences in lyotropic liquid crystals. Phys. Rev. Lett. 99, 187801 (2007).

    Article  Google Scholar 

  46. 46.

    Wu, D. H., Chen, A. D. & Johnson, C. S. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. Ser. A 115, 260–264 (1995).

    CAS  Article  Google Scholar 

  47. 47.

    Henchman, R. H. & Cockram, S. J. Water’s non-tetrahedral side. Faraday Discuss. 167, 529–550 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge J. S. Siegel for insights and useful discussions, and W. K. Fong for assistance with the SAXS experiments. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. Support by SNF Sinergia grant CRSII2_154451 to E.M.L. and R.M. is acknowledged. R.M. further acknowledges support from SNF grants 200020_178997 and 200021_172767.

Author information

Affiliations

Authors

Contributions

E.M.L. and R.M. designed and directed the study. L.S.M. developed the lipid synthesis, produced lipidic mesophases, performed SAXS and WAXS experiments, and coordinated the NMR, DSC and FWS experiments. S.A. set up and performed molecular dynamics simulations. M.D. synthesized, purified and performed NMR characterization of the lipids. J.J.V. performed DSC experiments. F.J. collected and interpreted FWS data. S.J. collected and interpreted diffusion NMR data. O.Z. directed the NMR studies. L.S.M., S.A., E.M.L. and R.M. wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Ehud M. Landau or Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Nanotechnology thanks Tianshu Li and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Supplementary Figures 1–11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salvati Manni, L., Assenza, S., Duss, M. et al. Soft biomimetic nanoconfinement promotes amorphous water over ice. Nat. Nanotechnol. 14, 609–615 (2019). https://doi.org/10.1038/s41565-019-0415-0

Download citation

Further reading