Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment


Mitochondrial redox homeostasis, the balance between reactive oxygen species and antioxidants such as glutathione, plays critical roles in many biological processes, including biosynthesis and apoptosis, and thus is a potential target for cancer treatment. Here, we report a mitochondrial oxidative stress amplifier, MitoCAT-g, which consists of carbon-dot-supported atomically dispersed gold (CAT-g) with further surface modifications of triphenylphosphine and cinnamaldehyde. We find that the MitoCAT-g particles specifically target mitochondria and deplete mitochondrial glutathione with atomic economy, thus amplifying the reactive oxygen species damage caused by cinnamaldehyde and finally leading to apoptosis in cancer cells. We show that imaging-guided interventional injection of these particles potently inhibits tumour growth in subcutaneous and orthotopic patient-derived xenograft hepatocellular carcinoma models without adverse effects. Our study demonstrates that MitoCAT-g amplifies the oxidative stress in mitochondria and suppresses tumour growth in vivo, representing a promising agent for anticancer applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design of a mitochondrial oxidative stress amplifier (MitoCAT-g) for cancer treatment.
Fig. 2: Synthesis and characterization of CAT-g.
Fig. 3: Intracellular distribution of MitoCAT-g in HepG-2 cells.
Fig. 4: MitoCAT-g amplifies mitochondrial oxidative stress in HepG-2 cancer cells.
Fig. 5: MitoCAT-g amplifies oxidative stress and suppresses tumour growth in a subcutaneous tumour model.
Fig. 6: MitoCAT-g amplifies oxidative stress and induces an enhanced antitumour effect in orthotopic hepatic PDX tumours.

Data availability

All relevant data during the study are available from the corresponding authors upon request.


  1. 1.

    Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Willems, P. H., Rossignol, R., Dieteren, C. E., Murphy, M. P. & Koopman, W. J. Redox homeostasis and mitochondrial dynamics. Cell. Metab. 22, 207–218 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Baulies, A. et al. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biol. 14, 164–177 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Chen, G., Chen, Z., Hu, Y. & Huang, P. Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by β-phenethyl isothiocyanate: mechanisms for anti-leukemia activity. Antioxid. Redox Sign. 15, 2911–2921 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Yang, X.-F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Ma, X., Gong, N., Zhong, L., Sun, J. & Liang, X.-J. Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97, 10–21 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Zhang, C. J. et al. Mechanism-guided design and synthesis of a mitochondria-targeting artemisinin analogue with enhanced anticancer activity. Angew. Chem. Int. Ed. 128, 13974–13978 (2016).

    Article  Google Scholar 

  19. 19.

    Ka, H. et al. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett. 196, 143–152 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Grönbeck, H., Curioni, A. & Andreoni, W. Thiols and disulfides on the Au(111) surface: the headgroup–gold interaction. J. Am. Chem. Soc. 122, 3839–3842 (2000).

    Article  Google Scholar 

  21. 21.

    Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Miller, J. et al. The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J. Catal. 240, 222–234 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2016).

    Article  Google Scholar 

  24. 24.

    Frenkel, A. I., Hills, C. W. & Nuzzo, R. G. A view from the inside: complexity in the atomic scale ordering of supported metal nanoparticles. J. Phys. Chem. B 105, 12689–12703 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    Oberli, L., Monot, R., Mathieu, H., Landolt, D. & Buttet, J. Auger and X-ray photoelectron spectroscopy of small Au particles. Surf. Sci. 106, 301–307 (1981).

    CAS  Article  Google Scholar 

  26. 26.

    Wang, X. et al. Glutathione-triggered ‘off–on’ release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J. Am. Chem. Soc. 135, 9805–9810 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Hu, Q., Gao, M., Feng, G. & Liu, B. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics. Angew. Chem. Int. Ed. 53, 14225–14229 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Han, D. C. et al. 2′-Benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J. Biol. Chem. 279, 6911–6920 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    Kim, B. et al. Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 23, 5091–5097 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Deng, C., Jiang, Y., Cheng, R., Meng, F. & Zhong, Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7, 467–480 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Shan, X., Jones, D. P., Hashmi, M. & Anders, M. Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. Chem. Res. Toxicol. 6, 75–81 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    Marí, M. et al. Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-κB activation. Gastroenterology 134, 1507–1520 (2008).

    Article  Google Scholar 

  33. 33.

    Esterbauer, H., Schaur, R. J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    Hinman, A., Chuang, H.-H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    Ma, X. et al. Colloidal gold nanoparticles induce changes in cellular and subcellular morphology. ACS Nano 11, 7807–7820 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1311 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    Higuchi, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol. 66, 1527–1535 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    Smiley, S. T. et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl Acad. Sci. USA 88, 3671–3675 (1991).

    CAS  Article  Google Scholar 

  39. 39.

    Alavian, K. N. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13, 1224–1233 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Schulte, A. & Schuhmann, W. Single-cell microelectrochemistry. Angew. Chem. Int. Ed. 46, 8760–8777 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Maluccio, M. & Covey, A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J. Clin. 62, 394–399 (2012).

    Article  Google Scholar 

  42. 42.

    Altekruse, S. F., Henley, S. J., Cucinelli, J. E. & McGlynn, K. A. Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am. J. Gastroenterol. 109, 542–553 (2014).

    Article  Google Scholar 

  43. 43.

    Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Lin, S., Lin, C., Lin, C., Hsu, C. & Chen, Y. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut. 54, 1151–1156 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    Germani, G. et al. Clinical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocelullar carcinoma: a meta-analysis. J. Hepatol. 52, 380–388 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Livraghi, T. et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 197, 101–108 (1995).

    CAS  Article  Google Scholar 

  47. 47.

    Zheng, M. et al. Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv. Mater. 26, 3554–3560 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    Yuan, L., Lin, W., Xie, Y., Chen, B. & Song, J. Development of a ratiometric fluorescent sensor for ratiometric imaging of endogenously produced nitric oxide in macrophage cells. Chem. Commun. 47, 9372–9374 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

  51. 51.

    Tan, X. et al. The influence of dissolved Si on Ni precipitate formation at the kaolinite water interface: kinetics, DRS and EXAFS analysis. Chemosphere 173, 135–142 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Price, S. W., Rhodes, J. M., Calvillo, L. & Russell, A. E. Revealing the details of the surface composition of electrochemically prepared Au@Pd core@shell nanoparticles with in situ EXAFS. J. Phys. Chem. C 117, 24858–24865 (2013).

    CAS  Article  Google Scholar 

  53. 53.

    Noh, J. et al. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 6, 6907 (2015).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (NSFC) (grants nos. 21327806, 21621003, 21235004, 31630027, 31430031, 31600808 and 31225009), the NSFC-German Research Foundation (DFG) project 31761133013 and the ‘Strategic Priority Research Program’ from the Chinese Academy of Sciences (XDA09030301). The authors acknowledge support from the BL14W1 station of the Shanghai Synchrotron Radiation Facility.

Author information




N.G., J.L. and X.-J.L. conceived and designed the experiments. N.G., X.M., X.Y., Q.Z., S.H., T.Z. and S.C. performed the experiments. N.G., X.Y., X.C., X.Tan, S.Y., T.Z., J.Y., H.J., J.L. and X.-J.L. analysed the results. N.G., X.Teng, X.H., Y.G., J.L. and X.-J.L. wrote the manuscript. J.L. and X.-J.L. supervised the entire project.

Corresponding authors

Correspondence to Jinghong Li or Xing-Jie Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Nanotechnology thanks Jose Fernandez-Checa, Chun Li and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures 1–31, Supplementary Tables 1–2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Ma, X., Ye, X. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 14, 379–387 (2019).

Download citation

Further reading