Actinia-like multifunctional nanocoagulant for single-step removal of water contaminants


Current technologies for water purification are limited by their contaminant-specific removal capability, requiring multiple processes to meet water quality objectives. Here we show an innovative biomimetic micellar nanocoagulant that imitates the structure of Actinia, a marine predator that uses its tentacles to ensnare food, for the removal of an array of water contaminants with a single treatment step. The Actinia-like micellar nanocoagulant has a core–shell structure and readily disperses in water while maintaining a high stability against aggregation. To achieve effective coagulation, the nanocoagulant everts its configuration, similar to Actinia. The shell hydrolyses into ‘flocs’ and destabilizes and enmeshes colloidal particles while the core is exposed to water, like the extended tentacles of Actinia, and adsorbs the dissolved contaminants. The technology, with its ability to remove a broad spectrum of contaminants and produce high-quality water, has the potential to be a cost-effective replacement for current water treatment processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Synthesis and characterization of AMC.
Fig. 2: AMC coagulation performance.
Fig. 3: Small contaminant species analysis.
Fig. 4: AMC configuration eversion behaviour.
Fig. 5: Real-time fluorescence imaging of AMC coagulation.
Fig. 6: Molecular dynamic simulations of AMC–NO3 and AMC–DCF interactions.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 23 January 2019

    In the version of the Supplementary Information file originally published with this Article, the images used for Supplementary Fig. 4 were incorrect and have now been replaced. This does not affect the results of the Article.


  1. 1.

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Elimelech, M. The global challenge for adequate and safe water. J. Water Supply Res. Technol. AQUA 55, 3–10 (2006).

    Article  Google Scholar 

  3. 3.

    Qu, X. L., Alvarez, P. J. J. & Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Service, R. F. Desalination freshens up. Science 313, 1088–1090 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Grant, S. B. et al. Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Ali, I. & Gupta, V. K. Advances in water treatment by adsorption technology. Nat. Protoc. 1, 2661–2667 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    Hering, J. G., Waite, T. D., Luthy, R. G., Drewes, J. E. & Sedlak, D. L. A changing framework for urban water systems. Environ. Sci. Technol. 47, 10721–10726 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Li, J. China gears up to tackle tainted water. Nature 499, 14–15 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Morel, F. M. M. & Hering, J. G. Principles and Applications of Aquatic Chemistry (Wiley, New York, 1993).

    Google Scholar 

  11. 11.

    Richardson, S. D. & Temes, T. A. Water analysis: emerging contaminants and current issues. Anal. Chem. 90, 398–428 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Shon, H. K., Vigneswaran, S. & Snyder, S. A. Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol. 36, 327–374 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Luo, Y. L. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473, 619–641 (2014).

    Article  Google Scholar 

  14. 14.

    Jin, L. Y., Zhang, G. M. & Tian, H. F. Current state of sewage treatment in China. Water Res. 66, 85–98 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Westerhoff, P., Alvarez, P., Li, Q. L., Gardea-Torresdey, J. & Zimmerman, J. Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ. Sci. Nano 3, 1241–1253 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  18. 18.

    Moreira, F. C., Boaventura, R. A. R., Brillas, E. & Vilar, V. J. P. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217–261 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Bolisetty, S. & Mezzenga, R. Amyloid–carbon hybrid membranes for universal water purification. Nat. Nanotech. 11, 365–371 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Pintilie, L., Torres, C. M., Teodosiu, C. & Castells, F. Urban wastewater reclamation for industrial reuse: an LCA case study. J. Clean Prod. 139, 1–14 (2016).

    Article  Google Scholar 

  22. 22.

    Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment (IWA, London, 2006).

    Google Scholar 

  23. 23.

    Wang, J. P., Yuan, S. J., Wang, Y. & Yu, H. Q. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res. 47, 2643–2648 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Stumm, W., Morgan, J. J. & Black, A. P. Chemical aspects of coagulation [with discussion]. J. Am. Water Works Assoc. 54, 971–994 (1962).

    CAS  Article  Google Scholar 

  25. 25.

    Stumm, W. & O’Melia, C. R. Stoichiometry of coagulation. J. Am. Water Works Assoc. 60, 514–539 (1968).

    CAS  Article  Google Scholar 

  26. 26.

    Bolong, N., Ismail, A. F., Salim, M. R. & Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239, 229–246 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Edzwald, J. K. Coagulation in drinking water treatment: particles, organics and coagulants. Water Sci. Technol. 27, 21–35 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    Krasner, S. W. & Amy, G. Jar-test evaluations of enhanced coagulation. J. Am. Water Works Assoc. 87, 93–107 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    Huang, B. C., Guan, Y. F., Chen, W. & Yu, H. Q. Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment. Water Res. 123, 216–223 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Fan, X. J. et al. Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water. Desalination 335, 47–54 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Bolto, B., Dixon, D., Eldridge, R. & King, S. Removal of THM precursors by coagulation or ion exchange. Water Res. 36, 5066–5073 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    Wang, X. M. et al. Preparation and evaluation of titanium-based xerogel as a promising coagulant for water/wastewater treatment. Environ. Sci. Technol. 50, 9619–9626 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Zeng, Y. & Park, J. Characterization and coagulation performance of a novel inorganic polymer coagulant–poly-zinc-silicate-sulfate. Colloid Surf. A 334, 147–154 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Tzoupanos, N. D., Zouboulis, A. I. & Tsoleridis, C. A. A systematic study for the characterization of a novel coagulant (polyaluminium silicate chloride). Colloid Surf. A 342, 30–39 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Haberkamp, J., Ruhl, A. S., Ernst, M. & Jekel, M. Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration. Water Res. 41, 3794–3802 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    Park, T., Ampunan, V., Lee, S. & Chung, E. Chemical behavior of different species of phosphorus in coagulation. Chemosphere 144, 2264–2269 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Lacasa, E., Canizares, P., Saez, C., Fernandez, F. J. & Rodrigo, M. A. Removal of nitrates from groundwater by electrocoagulation. Chem. Eng. J. 171, 1012–1017 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Gabaldon, C. et al. Biological nitrate removal from wastewater of a metal-finishing industry. J. Hazard. Mater. 148, 485–490 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Suarez, S., Lerna, J. M. & Omil, F. Pre-treatment of hospital wastewater by coagulation—flocculation and flotation. Bioresour. Technol. 100, 2138–2146 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Liu, J. L. & Wong, M. H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ. Int. 59, 208–224 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Wei, J. C. et al. Comparison of coagulation behavior and floc structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution. Water Res. 43, 724–732 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    Matilainen, A., Vepsalainen, M. & Sillanpaa, M. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Interface Sci. 159, 189–197 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Wang, S. P. et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl Acad. Sci. USA 107, 16028–16032 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular-orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    CAS  Article  Google Scholar 

  45. 45.

    Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Article  Google Scholar 

  46. 46.

    Mark, P. & Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001).

    CAS  Article  Google Scholar 

  47. 47.

    Jorgensen, W. L., Maxwell, D. S. & TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Jiang, W., Yan, T. Y., Wang, Y. T. & Voth, G. A. Molecular dynamics simulation of the energetic room-temperature ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN). J. Phys. Chem. B 112, 3121–3131 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    Sprenger, K. G., Jaeger, V. W. & Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B 119, 5882–5895 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Asensio, J. L., Martinpastor, M. & Jimenezbarbero, J. The use of CVFF and CFF91 force fields in conformational analysis of carbohydrate molecules. Comparison with Amber molecular mechanics and dynamics calculations for methyl α-lactoside. Int. J. Biol. Macromol. 17, 137–148 (1995).

    CAS  Article  Google Scholar 

  51. 51.

    Smith, W. & Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14, 136–141 (1996).

    CAS  Article  Google Scholar 

  52. 52.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  53. 53.

    Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    CAS  Article  Google Scholar 

Download references


The authors are grateful for financial support from the Major Program of the National Natural Science Foundation of China (grant no. 91434132), the Fund for Innovative Research Group of NSFC (grant no. 51721006) and the US National Science Foundation Graduate Research Fellowship awarded to R.M.D.

Author information




H.Z. conceived the initial idea and experimental design. M.E. and H.Z. supervised the study and experiments. J.L. performed the nanocoagulant synthesis and characterization experiments. N.C. and C.G. investigated the coagulation performance. J.N. and J.L. designed the coagulation behaviour experiments, and R.M.D. and J.L. carried out and analysed the experiments. S.C. carried out the molecular dynamics simulations. C.H., Q.S. and C.X. contributed to the data analysis of the FT-ICR mass spectra. All authors discussed the results and commented on the manuscript. M.E., R.M.D., H.Z. and J.L. wrote the paper with help from all authors.

Corresponding authors

Correspondence to Menachem Elimelech or Huazhang Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Figures 1–17, Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Cheng, S., Cao, N. et al. Actinia-like multifunctional nanocoagulant for single-step removal of water contaminants. Nature Nanotech 14, 64–71 (2019).

Download citation

Further reading