Letter | Published:

Metallic supercurrent field-effect transistor

Nature Nanotechnology (2018) | Download Citation

Abstract

In their original formulation of superconductivity, the London brothers predicted1 the exponential suppression of an electrostatic field inside a superconductor over the so-called London penetration depth2,3,4, λL. Despite a few experiments indicating hints of perturbation induced by electrostatic fields5,6,7, no clue has been provided so far on the possibility to manipulate metallic superconductors via the field effect. Here, we report field-effect control of the supercurrent in all-metallic transistors made of different Bardeen–Cooper–Schrieffer superconducting thin films. At low temperature, our field-effect transistors show a monotonic decay of the critical current under increasing electrostatic field up to total quenching for gate voltage values as large as ±40 V in titanium-based devices. This bipolar field effect persists up to ~85% of the critical temperature (~0.41 K), and in the presence of sizable magnetic fields. A similar behaviour is observed in aluminium thin-film field-effect transistors. A phenomenological theory accounts for our observations, and points towards the interpretation in terms of an electric-field-induced perturbation propagating inside the superconducting film. In our understanding, this affects the pairing potential and quenches the supercurrent. These results could represent a groundbreaking asset for the realization of all-metallic superconducting field-effect electronics and leading-edge quantum information architectures8,9.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    London, F. & London, H. The electromagnetic equations of the supraconductor. Proc. R. Soc. A149, 71–88 (1935).

  2. 2.

    Hirsch, J. E. Charge expulsion and electric field in superconductors. Phys. Rev. B 68, 184502 (2003).

  3. 3.

    Hirsch, J. E. Electrodynamics of superconductors. Phys. Rev. B 69, 214515 (2004).

  4. 4.

    Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

  5. 5.

    Tao, R., Xu, X., Lan, Y. C. & Shiroyanagi, Y. Electric-field induced low temperature superconducting granular balls. Physica C 377, 357–361 (2002).

  6. 6.

    Glover, R. E. III & Sherrill, M. D. Changes in superconducting critical temperature produced by electrostatic charging. Phys. Rev. Lett. 5, 248–250 (1960).

  7. 7.

    Moro, R., Xu, X., Yin, S. & de Heer, W. A. Ferroelectricity in free niobium clusters. Science 23, 1265 (2003).

  8. 8.

    Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

  9. 9.

    Casparis, L. et al. Gatemon benchmarking and two-qubit operations. Phys. Rev. Lett. 116, 150505 (2016).

  10. 10.

    Anthore, A., Pothier, H. & Esteve, D. Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett. 90, 127001 (2003).

  11. 11.

    Courtois, H., Meschke, M., Peltonen, J. T. & Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008).

  12. 12.

    Bardeen, J. Critical fields and currents in superconductors. Rev. Mod. Phys. 34, 667 (1962).

  13. 13.

    Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985).

  14. 14.

    Kleinsasser, A. W., Jackson, T. N., McInturff, D., Rammo, F. & Pettit, G. D. Superconducting InGaAs junction field-effect transistors with Nb electrodes. Appl. Phys. Lett. 55, 1909–1911 (1989).

  15. 15.

    Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

  16. 16.

    Xiang, J., Vidan, A., Tinkham, M., Westervelt, R. M. & Lieber, C. M. Ge/Si mesoscopic Josephson junctions. Nat. Nanotech. 1, 208–213 (2006).

  17. 17.

    Ginzburg, V. L. & Landau, L. D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 35 (1950).

  18. 18.

    Morgan-Wall, T., Leith, B., Hartman, N., Rahman, A. & Marcović, N. Measurement of critical currents of superconducting aluminum nanowires in external magnetic fields: evidence for a Weber blockade. Phys. Rev. Lett. 114, 077002 (2015).

  19. 19.

    Fornieri, F., Timossi, G., Virtanen, P., Solinas, P. & Giazotto, F. 0−π phase-controllable thermal Josephson junction. Nat. Nanotech. 12, 425–429 (2017).

  20. 20.

    Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley, Weinheim, 2004).

  21. 21.

    Ronzani, A., Altimiras, C. & Giazotto, F. Highly sensitive superconducting quantum-interference proximity transistor. Phys. Rev. Appl. 2, 024005 (2014).

  22. 22.

    Strambini, E. et al. The ω-SQUIPT as a tool to phase-engineer Josephson topological materials. Nat. Nanotech. 11, 1055–1059 (2016).

  23. 23.

    Devoret, M. H. & Grabert, H. in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (eds Grabert, H. & Devoret, M.) Ch. 1 (Springer, New York, 1992).

  24. 24.

    Pekola, J. P., Giazotto, F. & Saira, O.-P. Radio-frequency single-electron refrigerator. Phys. Rev. Lett. 98, 037201 (2007).

  25. 25.

    Fornieri, A. & Giazotto, F. Towards phase-coherent caloritronics in superconducting circuits. Nat. Nanotech. 12, 944–952 (2017).

  26. 26.

    Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).

  27. 27.

    Gol’tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

  28. 28.

    Giazotto, F. et al. Ultrasensitive proximity Josephson sensor with kinetic inductance readout. Appl. Phys. Lett. 92, 162507 (2008).

  29. 29.

    Kamlapure, A. et al. Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films. Appl. Phys. Lett. 96, 072509 (2010).

  30. 30.

    Shapoval, T. et al. Quantitative assessment of pinning forces and magnetic penetration depth in NbN thin films from complementary magnetic force microscopy and transport measurements. Phys. Rev. B 83, 214517 (2011).

Download references

Acknowledgements

The authors thank J. E. Hirsch for comments, and for drawing attention to relevant questions on key issues related to superconductivity so far considered well established. A. Braggio is acknowledged for a careful reading of the manuscript and for comments. J.S. Moodera, A. Shanenko and P. Virtanen are thanked for discussions. The authors acknowledge the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187-COMANCHE, and MIUR-FIRB2013–Project Coca (grant no. RBFR1379UX) for partial financial support. The work of G.D.S. and F.P. was funded by the Tuscany Region under the FARFAS 2014 project SCIADRO. The work of E.S. was partially funded by the Marie Curie Individual Fellowship MSCAIFEF-ST no. 660532-SuperMag. P.S. received funding from the European Union FP7/2007–2013 under REA grant agreement no. 630925-COHEAT.

Author information

Affiliations

  1. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

    • Giorgio De Simoni
    • , Federico Paolucci
    • , Elia Strambini
    •  & Francesco Giazotto
  2. SPIN-CNR, Genova, Italy

    • Paolo Solinas

Authors

  1. Search for Giorgio De Simoni in:

  2. Search for Federico Paolucci in:

  3. Search for Paolo Solinas in:

  4. Search for Elia Strambini in:

  5. Search for Francesco Giazotto in:

Contributions

G.D.S. and F.P. fabricated the samples, and, with E.S., performed the measurements. G.D.S. and F.P. analysed the experimental data with input from E.S. and F.G. P.S. developed the theoretical model with input from F.G., and performed the numerical calculations. F.G. conceived the experiment on the field effect, and wrote the manuscript with input from all authors. All authors discussed the results and their implications equally at all stages.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Francesco Giazotto.

Supplementary information

  1. Supplementary Information

    Supplementary Text, Supplementary Figures 1–3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0190-3