Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metallic supercurrent field-effect transistor

Abstract

In their original formulation of superconductivity, the London brothers predicted1 the exponential suppression of an electrostatic field inside a superconductor over the so-called London penetration depth2,3,4, λL. Despite a few experiments indicating hints of perturbation induced by electrostatic fields5,6,7, no clue has been provided so far on the possibility to manipulate metallic superconductors via the field effect. Here, we report field-effect control of the supercurrent in all-metallic transistors made of different Bardeen–Cooper–Schrieffer superconducting thin films. At low temperature, our field-effect transistors show a monotonic decay of the critical current under increasing electrostatic field up to total quenching for gate voltage values as large as ±40 V in titanium-based devices. This bipolar field effect persists up to ~85% of the critical temperature (~0.41 K), and in the presence of sizable magnetic fields. A similar behaviour is observed in aluminium thin-film field-effect transistors. A phenomenological theory accounts for our observations, and points towards the interpretation in terms of an electric-field-induced perturbation propagating inside the superconducting film. In our understanding, this affects the pairing potential and quenches the supercurrent. These results could represent a groundbreaking asset for the realization of all-metallic superconducting field-effect electronics and leading-edge quantum information architectures8,9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metallic supercurrent FET pre-characterization.
Fig. 2: Electrostatic-field dependence of the supercurrent FET.
Fig. 3: Magnetic-field dependence of the FET, and spatial extension of the electric-field-induced Ic suppression effect.

References

  1. London, F. & London, H. The electromagnetic equations of the supraconductor. Proc. R. Soc. A149, 71–88 (1935).

    Article  Google Scholar 

  2. Hirsch, J. E. Charge expulsion and electric field in superconductors. Phys. Rev. B 68, 184502 (2003).

    Article  Google Scholar 

  3. Hirsch, J. E. Electrodynamics of superconductors. Phys. Rev. B 69, 214515 (2004).

    Article  Google Scholar 

  4. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

  5. Tao, R., Xu, X., Lan, Y. C. & Shiroyanagi, Y. Electric-field induced low temperature superconducting granular balls. Physica C 377, 357–361 (2002).

    Article  Google Scholar 

  6. Glover, R. E. III & Sherrill, M. D. Changes in superconducting critical temperature produced by electrostatic charging. Phys. Rev. Lett. 5, 248–250 (1960).

    Article  Google Scholar 

  7. Moro, R., Xu, X., Yin, S. & de Heer, W. A. Ferroelectricity in free niobium clusters. Science 23, 1265 (2003).

    Article  Google Scholar 

  8. Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  Google Scholar 

  9. Casparis, L. et al. Gatemon benchmarking and two-qubit operations. Phys. Rev. Lett. 116, 150505 (2016).

    Article  Google Scholar 

  10. Anthore, A., Pothier, H. & Esteve, D. Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett. 90, 127001 (2003).

    Article  Google Scholar 

  11. Courtois, H., Meschke, M., Peltonen, J. T. & Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008).

    Article  Google Scholar 

  12. Bardeen, J. Critical fields and currents in superconductors. Rev. Mod. Phys. 34, 667 (1962).

    Article  Google Scholar 

  13. Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985).

    Article  Google Scholar 

  14. Kleinsasser, A. W., Jackson, T. N., McInturff, D., Rammo, F. & Pettit, G. D. Superconducting InGaAs junction field-effect transistors with Nb electrodes. Appl. Phys. Lett. 55, 1909–1911 (1989).

    Article  Google Scholar 

  15. Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    Article  Google Scholar 

  16. Xiang, J., Vidan, A., Tinkham, M., Westervelt, R. M. & Lieber, C. M. Ge/Si mesoscopic Josephson junctions. Nat. Nanotech. 1, 208–213 (2006).

    Article  Google Scholar 

  17. Ginzburg, V. L. & Landau, L. D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 35 (1950).

    Google Scholar 

  18. Morgan-Wall, T., Leith, B., Hartman, N., Rahman, A. & Marcović, N. Measurement of critical currents of superconducting aluminum nanowires in external magnetic fields: evidence for a Weber blockade. Phys. Rev. Lett. 114, 077002 (2015).

    Article  Google Scholar 

  19. Fornieri, F., Timossi, G., Virtanen, P., Solinas, P. & Giazotto, F. 0−π phase-controllable thermal Josephson junction. Nat. Nanotech. 12, 425–429 (2017).

    Article  Google Scholar 

  20. Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley, Weinheim, 2004).

  21. Ronzani, A., Altimiras, C. & Giazotto, F. Highly sensitive superconducting quantum-interference proximity transistor. Phys. Rev. Appl. 2, 024005 (2014).

    Article  Google Scholar 

  22. Strambini, E. et al. The ω-SQUIPT as a tool to phase-engineer Josephson topological materials. Nat. Nanotech. 11, 1055–1059 (2016).

    Article  Google Scholar 

  23. Devoret, M. H. & Grabert, H. in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (eds Grabert, H. & Devoret, M.) Ch. 1 (Springer, New York, 1992).

  24. Pekola, J. P., Giazotto, F. & Saira, O.-P. Radio-frequency single-electron refrigerator. Phys. Rev. Lett. 98, 037201 (2007).

    Article  Google Scholar 

  25. Fornieri, A. & Giazotto, F. Towards phase-coherent caloritronics in superconducting circuits. Nat. Nanotech. 12, 944–952 (2017).

    Article  Google Scholar 

  26. Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).

    Article  Google Scholar 

  27. Gol’tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Article  Google Scholar 

  28. Giazotto, F. et al. Ultrasensitive proximity Josephson sensor with kinetic inductance readout. Appl. Phys. Lett. 92, 162507 (2008).

    Article  Google Scholar 

  29. Kamlapure, A. et al. Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films. Appl. Phys. Lett. 96, 072509 (2010).

    Article  Google Scholar 

  30. Shapoval, T. et al. Quantitative assessment of pinning forces and magnetic penetration depth in NbN thin films from complementary magnetic force microscopy and transport measurements. Phys. Rev. B 83, 214517 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. E. Hirsch for comments, and for drawing attention to relevant questions on key issues related to superconductivity so far considered well established. A. Braggio is acknowledged for a careful reading of the manuscript and for comments. J.S. Moodera, A. Shanenko and P. Virtanen are thanked for discussions. The authors acknowledge the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187-COMANCHE, and MIUR-FIRB2013–Project Coca (grant no. RBFR1379UX) for partial financial support. The work of G.D.S. and F.P. was funded by the Tuscany Region under the FARFAS 2014 project SCIADRO. The work of E.S. was partially funded by the Marie Curie Individual Fellowship MSCAIFEF-ST no. 660532-SuperMag. P.S. received funding from the European Union FP7/2007–2013 under REA grant agreement no. 630925-COHEAT.

Author information

Authors and Affiliations

Authors

Contributions

G.D.S. and F.P. fabricated the samples, and, with E.S., performed the measurements. G.D.S. and F.P. analysed the experimental data with input from E.S. and F.G. P.S. developed the theoretical model with input from F.G., and performed the numerical calculations. F.G. conceived the experiment on the field effect, and wrote the manuscript with input from all authors. All authors discussed the results and their implications equally at all stages.

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Simoni, G., Paolucci, F., Solinas, P. et al. Metallic supercurrent field-effect transistor. Nature Nanotech 13, 802–805 (2018). https://doi.org/10.1038/s41565-018-0190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0190-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing