Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling

Abstract

Palladium-catalysed cross-coupling reactions, central tools in fine-chemical synthesis, predominantly employ soluble metal complexes despite recognized challenges with product purification and catalyst reusability1,2,3. Attempts to tether these homogeneous catalysts on insoluble carriers have been thwarted by suboptimal stability, which leads to a progressively worsening performance due to metal leaching or clustering4. The alternative application of supported Pd nanoparticles has faced limitations because of insufficient activity under the mild conditions required to avoid thermal degradation of the substrates or products. Single-atom heterogeneous catalysts lie at the frontier5,6,7,8,9,10,11,12,13,14,15,16,17,18. Here, we show that the Pd atoms anchored on exfoliated graphitic carbon nitride (Pd-ECN) capture the advantages of both worlds, as they comprise a solid catalyst that matches the high chemoselectivity and broad functional group tolerance of state-of-the-art homogeneous catalysts for Suzuki couplings, and also demonstrate a robust stability in flow. The adaptive coordination environment within the macroheterocycles of ECN facilitates each catalytic step. The findings illustrate the exciting opportunities presented by nanostructuring single atoms in solid hosts for catalytic processes that remain difficult to heterogenize.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural comparison of the catalysts.
Fig. 2: Properties of Pd-ECN.
Fig. 3: Evaluation of the C–C coupling performance.
Fig. 4: Comparative scope of Pd-ECN and Pd(PPh3)4 catalysts for Suzuki couplings.
Fig. 5: Reaction pathway of the Suzuki coupling.

Similar content being viewed by others

References

  1. Yin, L. & Liebscher, J. Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133–173 (2007).

    Article  CAS  Google Scholar 

  2. Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem. Rev. 111, 2251–2320 (2011).

    Article  Google Scholar 

  3. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  Google Scholar 

  4. Yang, H., Han, X., Li, G. & Wang, Y. N-heterocyclic carbene palladium complex supported on ionic liquid-modified SBA-16: an efficient and highly recyclable catalyst for the Suzuki and Heck reactions. Green. Chem. 11, 1184–1193 (2009).

    Article  CAS  Google Scholar 

  5. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  6. Zhang, H., Liu, G., Shi, L. & Ye, J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018).

    Article  Google Scholar 

  7. Zhu, C. et al. Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017).

    Article  CAS  Google Scholar 

  8. Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017).

    Article  CAS  Google Scholar 

  9. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  Google Scholar 

  10. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  Google Scholar 

  11. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  Google Scholar 

  12. Zhang, H. et al. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 11, 49–52 (2012).

    Article  Google Scholar 

  13. Yang, M. et al. A common single-site Pt(ii)–O(OH)x– species stabilized by sodium on 'active' and 'inert' supports catalyzes the water–gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    Article  CAS  Google Scholar 

  14. Vilé, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    Article  Google Scholar 

  15. Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  Google Scholar 

  16. Chen, Z. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27, 1605785 (2017).

    Article  Google Scholar 

  17. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  Google Scholar 

  18. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  Google Scholar 

  19. Vorobyeva, E. et al. Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. J. Mater. Chem. A 5, 16393–16403 (2017).

    Article  CAS  Google Scholar 

  20. Feiz, A., Bazgir, A., Balu, A. M. & Luque, R. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts. Sci. Rep. 6, 32719 (2016).

    Article  Google Scholar 

  21. Zhang, X. et al. C-C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 140, 954–962 (2018).

    Article  CAS  Google Scholar 

  22. Thomas, A. A., Wang, H., Zahrt, A. F. & Denmark, S. E. Structural, kinetic, and computational characterization of the elusive arylpalladium(ii)boronate complexes in the Suzuki–Miyaura reaction. J. Am. Chem. Soc. 139, 3805–3821 (2017).

    Article  CAS  Google Scholar 

  23. Thomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the Suzuki–Miyaura reaction revealed: the missing link. Science 352, 329–332 (2016).

    Article  CAS  Google Scholar 

  24. Sundermann, A., Uzan, O. & Martin, J. M. L. Computational study of a new Heck reaction mechanism catalyzed by palladium(ii/iv) species. Chem. Eur. J. 7, 1703–1711 (2001).

    Article  CAS  Google Scholar 

  25. Xue, L. & Lin, Z. Theoretical aspects of palladium-catalysed carbon–carbon cross-coupling reactions. Chem. Soc. Rev. 39, 1692–1705 (2010).

    Article  CAS  Google Scholar 

  26. García-Melchor, M. et al. Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms. Acc. Chem. Res. 46, 2626–2634 (2013).

    Article  Google Scholar 

  27. Busch, M., Wodrich, M. D. & Corminboeuf, C. Linear scaling relationships and volcano plots in homogeneous catalysis—revisiting the Suzuki reaction. Chem. Sci. 6, 6754–6761 (2015).

    Article  CAS  Google Scholar 

  28. Ortuño, M. A., Lledós, A., Maseras, F. & Ujaque, G. The transmetalation process in Suzuki–Miyaura reactions: calculations indicate lower barrier via boronate intermediate. ChemCatChem. 6, 3132–3138 (2014).

    Article  Google Scholar 

  29. Ahlquist, M. S. G. & Norrby, P.-O. Dispersion and back-donation gives tetracoordinate [Pd(PPh3)4]. Angew. Chem. Int. Ed. 50, 11794–11797 (2011).

    Article  CAS  Google Scholar 

  30. Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem. 9, 17–29 (2017).

    Article  CAS  Google Scholar 

  31. Ravel, B. & Newville, M. Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  34. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  36. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  37. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  38. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank ETH Zurich, the Swiss National Science Foundation (Grant no. 200021-169679) and MINECO (CTQ2015-68770-R) for financial support. E.F. thanks MINECO La Caixa-Severo Ochoa for a predoctoral grant through Severo Ochoa Excellence Accreditation 2014-2018 (SEV-2013-0319). M.A.O. acknowledges the Juan de la Cierva-Incorporación postdoctoral program (IJCI-2016-29762). S.M.C. acknowledges support from the Henslow Research Fellowship at Girton College, Cambridge. P.A.M. acknowledges the EPSRC (Grant no. EP/R008779/1) for funding. We thank ScopeM at ETH Zurich for access to its facilities, BSC-RES for providing generous computational resources, Diamond Light Source for access and support in the use of the electron Physical Science Imaging Centre (EM16967), R. Hauert for XPS measurements, D. N. Johnstone for assistance in acquiring data at ePSIC. G.V. and S.R. thank T. Weller (Idorsia Pharmaceuticals Ltd.) for his constant support.

Author information

Authors and Affiliations

Authors

Contributions

J. P.-R. conceived and coordinated all stages of this research. E.V. and Z.C. prepared and characterized the catalysts. G.V. and S.R. undertook the catalytic tests. E.F., M.A.O. and N.L. conducted the computational studies. S.M.C. and P.A.M. conducted the AC-STEM analysis. Z.C., E.V., S.M., G.V., E F., N.L. and J P.-R. co-wrote the manuscript in discussion with other co-authors.

Corresponding author

Correspondence to Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1–7, Supplementary Methods and Supplementary References

Supplementary Video 1

Molecular dynamics simulation tracking the trajectory of a single Pd atom in a first principles run

Supplementary Video 2

Animation following the path for the Suzuki reaction with the Pd-ECN catalyst during the individual elementary steps calculated by DFT

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Vorobyeva, E., Mitchell, S. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotech 13, 702–707 (2018). https://doi.org/10.1038/s41565-018-0167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0167-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing