Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences

This article has been updated

Abstract

Ammonia-oxidizing microorganisms (AOM) contribute to one of the largest nitrogen fluxes in the global nitrogen budget. Four distinct lineages of AOM: ammonia-oxidizing archaea (AOA), beta- and gamma-proteobacterial ammonia-oxidizing bacteria (β-AOB and γ-AOB) and complete ammonia oxidizers (comammox), are thought to compete for ammonia as their primary nitrogen substrate. In addition, many AOM species can utilize urea as an alternative energy and nitrogen source through hydrolysis to ammonia. How the coordination of ammonia and urea metabolism in AOM influences their ecology remains poorly understood. Here we use stable isotope tracing, kinetics and transcriptomics experiments to show that representatives of the AOM lineages employ distinct regulatory strategies for ammonia or urea utilization, thereby minimizing direct substrate competition. The tested AOA and comammox species preferentially used ammonia over urea, while β-AOB favoured urea utilization, repressed ammonia transport in the presence of urea and showed higher affinity for urea than for ammonia. Characterized γ-AOB co-utilized both substrates. These results reveal contrasting niche adaptation and coexistence patterns among the major AOM lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth curves and maximum specific growth rate (µmax).
Fig. 2: 15N stable isotope tracking the ammonia and urea utilization in N. lacus.
Fig. 3: Michaelis–Menten kinetic constants of ammonia- and urea-dependent oxidation.
Fig. 4: Transcriptional response of AOM species to substrate switch from a single N source to a mixture of ammonia and urea.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. RNA-seq data in this study have been deposited in the NCBI GEO database under BioProject ID PRJNA896729. All nitrifier genomes in this study were downloaded from the public NCBI RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/). Source data are provided with this paper.

Change history

  • 28 March 2024

    In the version of the article initially published, Supplementary Tables 1 and 2 were switched with Source Data Tables 1 and 2. This has now been corrected.

References

  1. Kuypers, M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    Article  PubMed  Google Scholar 

  3. Frankland, P. F. & Frankland, G. C. V. The nitrifying process and its specific ferment.—Part I. Phil. Trans. R. Soc. B 181, 107–128 (1890).

    Google Scholar 

  4. Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Kessel, M. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).

  7. Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Li, P.-N. et al. Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME J. 12, 2389–2402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Monod, J. in Selected Papers in Molecular Biology by Jacques Monod (eds Lwoff A. & Ullman, A.) 139–162 (Academic Press, 2012).

  12. Gorke, B. & Stulke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

    Article  PubMed  Google Scholar 

  13. Fisher, S. H. & Sonenshein, A. L. Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu. Rev. Microbiol. 45, 107–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Beltran, G., Novo, M., Rozès, N., Mas, A. & Guillamón, J. M. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res. 4, 625–632 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Bayer, B. et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 10, 1051–1063 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl Acad. Sci. USA 108, 8420–8425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Klotz, M. G. et al. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl. Environ. Microbiol. 72, 6299–6315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koops, H. & Stehr, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Microbiology 137, 1689–1699 (1991).

    CAS  Google Scholar 

  20. Watson, S. W., Graham, L. B., Remsen, C. C. & Valois, F. W. A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Arch. Mikrobiol. 76, 183–203 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. Solomon, C. M., Collier, J. L., Berg, G. M. & Glibert, P. M. Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat. Microb. Ecol. 59, 67–88 (2010).

    Article  Google Scholar 

  22. Berman, T. & Bronk, D. A. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat. Microb. Ecol. 31, 279–305 (2003).

    Article  Google Scholar 

  23. Mobley, H. L. T., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitzinger, K. et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat. Microbiol. 4, 234–243 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Qin, W. et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 14, 2595–2609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sedlacek, C. J. et al. Transcriptomic response of Nitrosomonas europaea transitioned from ammonia- to oxygen-limited steady-state growth. mSystems 5, e00562-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stein, L. Y., Campbell, M. A. & Klotz, M. G. Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani. Front. Microbiol. 4, 277 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leigh, J. A. & Dodsworth, J. A. Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol. 61, 349–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Emori, M. T. et al. The deuridylylation activity of Herbaspirillum seropedicae GlnD protein is regulated by the glutamine: 2-oxoglutarate ratio. Biochim. Biophys. Acta Proteins Proteom. 1866, 1216–1223 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Merrick, M. Post-translational modification of PII signal transduction proteins. Front. Microbiol. 5, 763 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martens-Habbena, W. et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 17, 2261–2274 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Park, H. D., Wells, G. F., Bae, H., Criddle, C. S. & Francis, C. A. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72, 5643–5647 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Alonso-Saez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).

  36. Song, W. et al. Functional traits resolve mechanisms governing the assembly and distribution of nitrogen-cycling microbial communities in the global ocean. mBio 13, e03832-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mirandela, G. D., Tamburrino, G., Hoskisson, P. A., Zachariae, U. & Javelle, A. The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB. FASEB J. 33, 1989–1999 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Wacker, T., Garcia-Celma, J. J., Lewe, P. & Andrade, S. L. A. Direct observation of electrogenic NH4+ transport in ammonium transport (Amt) proteins. Proc. Natl Acad. Sci. USA 111, 9995–10000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williamson, G. et al. A two-lane mechanism for selective biological ammonium transport. eLife 9, e57183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eppley, R. W., Rogers, J. N. & McCarthy, J. J. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14, 912–920 (1969).

    Article  CAS  Google Scholar 

  41. Kirchman, D. L. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Button, D. Nutrient uptake by microorganisms according to kinetic parameters from theory as related to cytoarchitecture. Microbiol. Mol. Biol. Rev. 62, 636–645 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Button, D. & Robertson, B. Effect of nutrient kinetics and cytoarchitecture on bacterioplankter size. Limnol. Oceanogr. 45, 499–505 (2000).

    Article  CAS  Google Scholar 

  44. Lehtovirta-Morley, L. E. et al. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol. Ecol. 92, fiw057 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Qin, W. et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 67, 5067–5079 (2017).

    Article  PubMed  Google Scholar 

  47. Stieglmeier, M. et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 64, 2738–2752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lunau, M., Lemke, A., Walther, K., Martens-Habbena, W. & Simon, M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ. Microbiol. 7, 961–968 (2005).

    Article  PubMed  Google Scholar 

  49. Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).

    Article  CAS  Google Scholar 

  50. García-Robledo, E., Corzo, A. & Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 162, 30–36 (2014).

    Article  Google Scholar 

  51. Fawcett, J. K. & Scott, J. E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13, 156–159 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McIlvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, L., Altabet, M. A., Wu, T. & Hadas, O. Sensitive measurement of NH4+ 15N/14N (δ15NH4+) at natural abundance levels in fresh and saltwaters. Anal. Chem. 79, 5297–5303 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Peng, X. et al. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. J. Geophys. Res. Biogeosci. 121, 2082–2095 (2016).

    Article  CAS  Google Scholar 

  57. Granger, J. & Sigman, D. M. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun. Mass Spectrom. 23, 3753–3762 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Pett-Ridge, J. & Weber, P. K. in Microbial Systems Biology: Methods and Protocols (ed. Navid, A.) 91–136 (Springer, 2022).

  59. Dekas, A. E. et al. Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope nanoSIP. Front. Microbiol. 10, 2682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Martens-Habbena, W. & Stahl, D. A. in Methods in Enzymology Vol. 496 (eds Klotz, M. G. & Stein, L. Y.) 465–487 (Academic Press, 2011).

  61. Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    Article  CAS  Google Scholar 

  62. Qin, W. et al. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME J. 12, 508–519 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

  74. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Perry, B. Quan and T. Tubbs for technical assistance in growth experiments and S. Oleynik for maintaining the mass spectrometer for stable isotope analysis. N. inopinata was generously provided by H. Daims, University of Vienna. N. piranensis was generously provided by A. Santoro and B. Bayer, University of California, Santa Barbara. N. multiformis was kindly provided by J. Norton, Utah State University. N. ureae was kindly provided by A. Pommerening-Röser, University of Hamburg. This work was supported by National Natural Science Foundation of China grants 42277304 and 41977056 (to B.W.) and 42276117 (Y. Zheng). This work was also supported by the startup funding of the University of Oklahoma (to W.Q.). Work was also funded by the US Department of Energy’s Office of Science, Division of Biological and Environmental Research Program (Grant DE-SC0020356 to M.-K.H.W., X.M., D.A.S., C.P., Z.F., B.A. and S.P.W.) and by the Defense Advanced Research Projects Agency (Contract Number HR0011-17-2-0064 to M.-K.H.W., D.A.S. and S.P.W.). Funding was also provided by Florida Agricultural Experiment Station Hatch project FLA-FTL-005680, UF IFAS Early Career Award and USDA NIFA award number 2022-67019-36501 (to W.M.-H.). Part of this work was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The participation of X.W. and B.B.W. was supported by Simons Foundation grant 675459 to B.B.W. X.S. was supported by a G. Evelyn Hutchinson postdoctoral fellowship from Yale Institute for Biospheric Studies at Yale University. H.U. was supported by National Science Foundation grant DEB-1664052.

Author information

Authors and Affiliations

Authors

Contributions

W.Q., D.A.S., B.B.W., X.M., W.M.-H. and M.-K.H.W. designed the experiments. W.Q., S.P.W., Y. Zheng, E.C., X.L., J. Johnston, X.W., B.A. and Z.F. performed the experiments and analysed data with input from B.W., H.L., L.H., Q.T., W.W.C., X.S., M.W., L.N., K.A.H., H.U., X.T., Dongyu Wang, X.Y., Dazhi Wang, C.P., P.K.W., J. Jiang, Y. Zhang and J.Z. W.Q., S.P.W., D.A.S., W.M.-H. and M.-K.H.W. wrote the paper, with contributions and approval from all other authors.

Corresponding authors

Correspondence to Wei Qin, Willm Martens-Habbena or Mari-Karoliina H. Winkler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Marc Strous and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The phylogenetic pattern of ammonia and urea uptake and utilization genes in AOA (a), AOB (b), and comammox (c).

The phylogenomic trees were constructed based on concatenated sequences of 122 and 120 single-copy marker genes shared among archaea and bacteria, respectively73. Confidence values are based on 1000 bootstrap replications. Scale bars represent 20%, 10%, and 5% estimated sequence divergence for AOA, AOB, and comammox phylogenomic trees, respectively. The estimated completeness of each genome is displayed next to the taxon name. The gene copy number is indicated by the darkness of the color in the cycles. *Note that the genes involved in the ATP-dependent urea hydrolysis pathway were transcribed at very low levels during urea consumption by β-AOB N. lacus, suggesting a different function of these conserved enzymes in β-AOB. ut: DUR3-type urea transporter; urt: ATP-dependent urea ABC transporter; utp: yut-type urea transporter; nikR: nickel-responsive transcriptional regulator; ureA–C: urease; ureD–H, J: urease accessory protein; uc: putative urea carboxylase; ucp12: putative urea carboxylase accessory protein; amt: Amt-type ammonium transporter; Rh-type amt, Rhesus-type ammonia transporter; glnB/K: nitrogen regulatory PII protein; glnL: nitrogen regulation sensor histidine kinase GlnL; glnG: nitrogen regulation response regulator GlnG; ntrX: nitrogen regulation response regulator NtrX; ntrY: nitrogen regulation sensor histidine kinase NtrY; glnD: bifunctional PII protein uridylyltransferase/uridylyl-removing enzyme; amo: ammonia monooxygenase; gudB: glutamate dehydrogenase; GDH2: glutamate dehydrogenase; GLUD1_2: glutamate dehydrogenase (NAD(P)+); gdhA: glutamate dehydrogenase (NADP+); glt: NADPH-dependent glutamate synthase; glnA: glutamine synthetase; sbt: bicarbonate transporter; ca: carbonic anhydrase; SAP: short chain amide/urea porin.

Extended Data Fig. 2 Schematic illustration of the genomic regions of the AOM species tested in this study containing genes for ammonia and urea uptake and utilization.

Gene functions are indicated by color: Grey, ammonia oxidation and assimilation; green, urea transporters; purple, putative outer membrane short chain amide/urea porins; orange, urease and accessory proteins; yellow, nitrogen regulatory PII proteins and Nickel-responsive regulator; blue, bicarbonate transporter and carbonic anhydrase; red, putative allophanate hydrolase, urea carboxylase, and accessory proteins. Genes are drawn to scale, and the scale bar corresponds to 1000 bp sequence length. Gene full name/abbreviation pairs are the same as shown in Extended Data Fig. 1 and Supplementary Table 3.

Extended Data Fig. 3 15N stable isotope tracking the nitrite/nitrate production and ammonia secretion in N. lacus, N.oceani and N. inopinata.

Tracking nitrite/nitrate production and ammonia secretion for the incubations containing 15N-ammonia or 15N-urea. (a and b) N. lacus, (c and d) N. oceani, and (e and f) N. inopinata (n = 3 or 4 biologically independent incubations).

Extended Data Fig. 4 Summary of N assimilation results based on NanoSIMS.

(a) Schematic representations of ammonia and urea consumption profiles and indication of time points for cell collection. (b) % new N incorporation (average ± standard deviation of all analyzed cells) from ammonia and urea. (c) Example NanoSIMS image (scale bar = 5 µm) where top row shows preference for ammonia (images of the soil AOA N. viennensis cells) and bottom shows preference for urea (images of the β-AOB N. lacus cells). Over 15 NanoSIMS images were collected for each AOM species at each time point. See Supplementary Figs. 4 and Extended Data Fig. 5 for growth curves with the time points indicated for each organism and the NanoSIMS images for other investigated AOM species, respectively. The NanoSIMS analysis software output data, which were processed to calculate % incorporation from substrates, are provided in Source Data Table 2.

Extended Data Fig. 5 Example NanoSIMS images for the marine AOA N. piranensis, comammox N. inopinata, and γ-AOB N. oceani.

Top and bottom rows represent the NanoSIMS images taken at T1 for labeled urea and labeled ammona incubations, respectively. Over 15 NanoSIMS images were collected for each AOM species at each time point. The NanoSIMS analysis software output data, which were processed to calculate % incorporation from substrates, are provided in Source Data Table 2.

Extended Data Fig. 6 Percent of N incorporation from ammonia-N or urea-N determined by nanoSIMS for single cells of (a) N. piranensis (marine AOA), (b) N. viennensis (soil AOA), (c) N. inopinata (comammox), (d) N. lacus (β-AOB), and (e) N. oceani (γ-AOB).

N incorporation data were obtained in multiple filters harvesting cells from biological triplicate incubations (n = 3). The box plots represent the median as well as the 25% and 75% interquartile ranges. The whiskers represent 1.5× the interquartile ranges.

Extended Data Fig. 7 Percent of C incorporation from bicarbonate-C or urea-C determined by NanoSIMS for single cells of (a) N. piranensis (marine AOA), (b) N. viennensis (soil AOA), (c) N. inopinata (comammox), (d) N. lacus (β-AOB), and (e) N. oceani (γ-AOB).

Note that Y-axes are in different scales for bicarbonate-C (red) and urea-C (blue) incorporation. C incorporation data were obtained in multiple filters harvesting cells from biological triplicate incubations (n = 3). The box plots represent the median as well as the 25% and 75% interquartile ranges. The whiskers represent 1.5× the interquartile ranges.

Extended Data Fig. 8 Ammonia- or urea-dependent substrate oxidation kinetics of N. viennensis, N. piranensis, N. inopinata, N. lacus, and N. multiformis.

a–e, Ammonia-grown strains, and f–o, Urea-grown strains. Each graph represents a single trace of experimental replicates. Oxygen uptake rates were determined by a microrespirometry (MR) measurement upon substrate addition. Kinetic constants were obtained by fitting a Michaelis-Menten equation (red line) to total ammonia or urea and oxidation rates.

Extended Data Fig. 9 15N stable isotope tracking the ammonia and urea utilization in N. oceani and N. inopinata.

The 15N percentage of accumulated nitrite in the medium was measured for 15N-NH3 treated incubations (a and b) and 15N-urea treated incubations (c and d) and the contribution of ammonia and urea to nitrite production was calculated for (a, c) N. oceani and to nitrite and nitrate production for (b, d) N. inopinata (n = 3 biologically independent incubations). Error bars represent the standard deviations of the biological triplicate incubations. Total concentrations of N species are plotted in light grey on the secondary y axis for background reference.

Extended Data Fig. 10 Instantaneous measurement of oxygen uptake with N. viennensis, N. piranensis, and N. inopinata.

a–c, Ammonia-grown strains, and d–f, urea-grown strains. Arrows: the injection of ammonia or urea into the chamber via an injection port using a 2 mL syringe.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–7, Tables 1–3 (table titles only), Table 4, and Source Data Tables 1 and 2 (table titles only).

Reporting Summary

Supplementary Table 1

P values from two-tailed t-test (α = 0.05) pairing the maximum specific growth rate between different incubation experiments. Values <0.05 are highlighted in green. Letters without square brackets indicate treatment with different N substrates: A, incubation with ammonia only; A + U, incubation with ammonia + urea; U, incubation with urea only. Letters in square brackets indicate the substrate being utilized when calculated for the µmax: A, when using ammonia; U, when using urea; A + U, when using ammonia and urea together. *Inoculation with 1% urea-grown maintenance culture at mid-exponential phase; all other incubations were inoculated with 1% ammonia-grown maintenance culture.

Supplementary Table 2

The summarized ammonia- and urea-dependent oxidation kinetics parameters of N. piranensis, N. viennensis, N. inopinata, N. lacus and N. multiformis.

Supplementary Table 3

The summarized transcription data of ammonia and urea uptake and utilization gene in AMO species.

Source data

Source Data Table 1

Differential transcription of all AMO species genes in response to ammonia and urea additions.

Source Data Table 2

NanoSIMS analysis output (‘Raw’) and processed data (‘Data’) for calculating substrate incorporation percentages.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Wei, S.P., Zheng, Y. et al. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nat Microbiol 9, 524–536 (2024). https://doi.org/10.1038/s41564-023-01593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01593-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology