Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

High-throughput transcriptomics of 409 bacteria–drug pairs reveals drivers of gut microbiota perturbation

Abstract

Many drugs can perturb the gut microbiome, potentially leading to negative health consequences. However, mechanisms of most microorganism–drug responses have not been elucidated at the genetic level. Using high-throughput bacterial transcriptomics, we systematically characterized the gene expression profiles of prevalent human gut bacteria exposed to the most frequently prescribed orally administered pharmaceuticals. Across >400 drug–microorganism pairs, significant and reproducible transcriptional responses were observed, including pathways involved in multidrug resistance, metabolite transport, tartrate metabolism and riboflavin biosynthesis. Importantly, we discovered that statin-mediated upregulation of the AcrAB-TolC efflux pump in Bacteroidales species enhances microbial sensitivity to vitamin A and secondary bile acids. Moreover, gut bacteria carrying acrAB-tolC genes are depleted in patients taking simvastatin, suggesting that drug–efflux interactions generate collateral toxicity that depletes pump-containing microorganisms from patient microbiomes. This study provides a resource to further understand the drivers of drug-mediated microbiota shifts for better informed clinical interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Top-prescribed drugs elicit rich transcriptomic responses from prevalent gut bacterial species.
Fig. 2: Pathway enrichment analysis reveals modulation of conserved efflux pathways by top pharmaceutical compounds.
Fig. 3: Top pharmaceutical compounds impact gut bacterial metabolism, vitamin production and mitigation of toxic metabolites.
Fig. 4: Statin exposure alters Bacteroides sensitivity to common dietary metabolites via the AcrAB-TolC efflux pump.
Fig. 5: AcrAB-TolC is linked to gut microbiota shifts in statin-treated patient populations.
Fig. 6: Diverse patterns of transcriptional response among conspecific bacterial isolates.

Similar content being viewed by others

Data availability

All sequencing data generated in this study have been submitted to the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA925551.

Code availability

Scripts used to analyse sequencing data in this study can be accessed at https://github.com/wanglabcumc/microbial_RNAseq_processing.

References

  1. Global Medicine Spending and Usage Trends: Outlook to 2025 (IQVIA Institute, 2021).

  2. Health, United States 2019 (National Center for Health Statistics, accessed 14 October 2022); https://www.cdc.gov/nchs/hus/contents2019.htm#Table-039

  3. Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Nagata, N. et al. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology 163, 1038–1052 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756 (2016).

    Article  PubMed  Google Scholar 

  7. National Ambulatory Medical Care Survey: 2018 National Summary Tables (National Center for Health Statistics, 2018).

  8. Singh, R. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 10, 89 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Wexler, A. G. et al. Human gut Bacteroides capture vitamin B12 via cell surface-exposed lipoproteins. eLife 7, e37138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porras, A. M. et al. Inflammatory bowel disease-associated gut commensals degrade components of the extracellular matrix. mBio 13, e02201–e02222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Khoruts, A. & Sadowsky, M. J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13, 508–516 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takasuna, K. et al. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 56, 3752–3757 (1996).

    CAS  PubMed  Google Scholar 

  19. Klünemann, M. et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533–538 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y. et al. Metatranscriptomics for the human microbiome and microbial community functional profiling. Annu. Rev. Biomed. Data Sci. 4, 279–311 (2021).

  21. Lloréns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome research. Cell 185, 2725–2738 (2022).

    Article  PubMed  Google Scholar 

  22. Spanogiannopoulos, P. et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat. Microbiol. 7, 1605–1620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rekdal, V. M., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    Article  PubMed Central  Google Scholar 

  24. Huang, Y., Sheth, R. U., Kaufman, A. & Wang, H. H. Scalable and cost-effective ribonuclease-based rRNA depletion for transcriptomics. Nucleic Acids Res. 48, E20 (2020).

    Article  PubMed  Google Scholar 

  25. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fuentes, A. V., Pineda, M. D. & Venkata, K. C. N. Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice. Pharmacy 6, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shishkin, A. A. et al. Simultaneous generation of many RNA-seq libraries in a single reaction. Nat. Methods 12, 323–325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Derrien, M., Turroni, F., Ventura, M. & van Sinderen, D. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol. 30, 940–947 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Martinson, J. N. V. & Walk, S. T. Escherichia coli residency in the gut of healthy human adults. EcoSal Plus https://doi.org/10.1128/ECOSALPLUS.ESP-0003-2020 (2020).

  31. Kane, S. P. The Top 300 of 2017. ClinCalc Drugstats Database (ClinCalc LLC, 2021).

  32. Goh, E. B. et al. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl Acad. Sci. USA 99, 17025–17030 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gibson, B., Wilson, D. J., Feil, E. & Eyre-Walker, A. The distribution of bacterial doubling times in the wild. Proc. R. Soc. B 285, 20180789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhu, Z. et al. Entropy of a bacterial stress response is a generalizable predictor for fitness and antibiotic sensitivity. Nat. Commun. 11, 4365 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vicente, M., Chater, K. F. & De Lorenzo, V. Bacterial transcription factors involved in global regulation. Mol. Microbiol. 33, 8–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Cayres, L. C. et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front. Immunol. 12, 579140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bajaj, J. S. et al. Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G661 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poole, K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 10, 12–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, J., Deng, Z. & Yan, A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453, 254–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Bryan, L. E., Kowand, S. K. & Van Den Elzen, H. M. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob. Agents Chemother. 15, 7–13 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gruetter, C. in xPharm: The Comprehensive Pharmacology Reference 1–7 (Elsevier, 2007); https://doi.org/10.1016/B978-008055232-3.62174-9

  44. Sandberg, A., Blomqvist, I., Jonsson, U. E. & Lundborg, P. Pharmacokinetic and pharmacodynamic properties of a new controlled-release formulation of metoprolol: a comparison with conventional tablets. Eur. J. Clin. Pharmacol. 33, S9–S14 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Kohn, L. D. & Jakoby, W. B. Tartaric acid metabolism: III. The formation of glyceric acid. J. Biol. Chem. 243, 2465–2471 (1968).

    Article  CAS  PubMed  Google Scholar 

  46. Sobiecka, A., Synoradzki, L., Hajmowicz, H. & Zawada, K. Tartaric acid and its derivatives. Part 17. Synthesis and applications of tartrates. Org. Prep. Proced. Int. 49, 1–27 (2017).

    Article  CAS  Google Scholar 

  47. Proffitt, C. et al. Genome-scale metabolic modelling of the human gut microbiome reveals changes in the glyoxylate and dicarboxylate metabolism in metabolic disorders. iScience 25, 104513 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai, L., Wu, H., Li, D., Zhou, K. & Zou, F. Type 2 diabetes biomarkers of human gut microbiota selected via iterative sure independent screening method. PLoS ONE 10, e0140827 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Yoshii, K., Hosomi, K., Sawane, K. & Kunisawa, J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front. Nutr. 6, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Averianova, L. A., Balabanova, L. A., Son, O. M., Podvolotskaya, A. B. & Tekutyeva, L. A. Production of vitamin B2 (riboflavin) by microorganisms: an overview. Front. Bioeng. Biotechnol. 8, 1172 (2020).

    Article  Google Scholar 

  52. Wu, Y., Zhang, L., Li, S. & Zhang, D. Associations of dietary vitamin B1, vitamin B2, vitamin B6, and vitamin B12 with the risk of depression: a systematic review and meta-analysis. Nutr. Rev. 80, 351–366 (2022).

    Article  PubMed  Google Scholar 

  53. Rouhani, P. et al. Dietary riboflavin intake in relation to psychological disorders in Iranian adults: an observational study. Sci. Rep. 13, 5152 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. García-Minguillán, C. J. et al. Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes Nutr. 9, 435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gebbers, J. O. Atherosclerosis, cholesterol, nutrition, and statins—a critical review. Ger. Med. Sci. 5, Doc04 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hibberd, M. C. et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci. Transl. Med. https://doi.org/10.1126/SCITRANSLMED.AAL4069 (2017).

  58. Ko, H. H. T., Lareu, R. R., Dix, B. R. & Hughes, J. D. Statins: antimicrobial resistance breakers or makers? PeerJ 5, e3952 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keating, N. et al. Physiological concentrations of bile acids down‐regulate agonist induced secretion in colonic epithelial cells. J. Cell. Mol. Med. 13, 2293–2303 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lenz, K. D., Klosterman, K. E., Mukundan, H. & Kubicek-Sutherland, J. Z. Macrolides: from toxins to therapeutics. Toxins 13, 347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jang, S. AcrAB−TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep. 56, 326–334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nikaido, H., Basina, M., Nguyen, V. & Rosenberg, E. Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. 180, 4686–4692 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, D., Alberti, M., Lynch, C., Nikaido, H. & Hearst, J. E. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19, 101–112 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Y. et al. Antidepressants can induce mutation and enhance persistence toward multiple antibiotics. Proc. Natl Acad. Sci. USA 120, e2208344120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lien, F. et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J. Clin. Invest. 124, 1037–1051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stead, M. B. et al. RNAsnapTM: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Nucleic Acids Res. 40, e156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. sabre—a barcode demultiplexing and trimming tool for FastQ files. GitHub https://github.com/najoshi/sabre (2022).

  71. bcl2fastq conversion user guide (Illumina, 2013).

  72. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  73. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andy Bunn, M. K. A language and environment for statistical computing. R. Found. Stat. Comput 10, 11–18 (2017).

    Google Scholar 

  78. Parker, B. J., Wearsch, P. A., Veloo, A. C. M. & Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 11, 906 (2020).

  79. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 29, 62–71 (2015).

    Article  Google Scholar 

  82. Jeters, R. T., Wang, G. R., Moon, K., Shoemaker, N. B. & Salyers, A. A. Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J. Bacteriol. 191, 6374–6382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gelsinger, D. R. et al. Bacterial genome engineering using CRISPR RNA-guided transposases. Preprint at bioRxiv https://doi.org/10.1101/2023.03.18.533263 (2023).

Download references

Acknowledgements

We thank members of the Wang laboratory for advice and comments on the paper. H.H.W. acknowledges relevant funding support from the NSF (MCB-2025515), NIH (2R01AI132403, 1R01DK118044, 1R01CA272898, 1R01EB031935, 1R21AI146817), ONR (N00014-18-1-2237, N00014-17-1-2353), AFRL (S-168-4X5-001), Burroughs Wellcome Fund (1016691), Irma T. Hirschl Trust and Schaefer Research Award. D.R. acknowledges relevant funding support from the Columbia Medical Scientist Training Program. R.U.S. was supported by a Fannie and John Hertz Foundation Fellowship and an NSF Graduate Research Fellowship (DGE-1644869). D.R.G. was supported by the Burroughs Wellcome Fund Postdoctoral Diversity Enrichment Program.

Author information

Authors and Affiliations

Authors

Contributions

D.R., Y.H., R.U.S. and H.H.W. developed the initial concepts. D.R. and Y.H. performed experiments and analysed data with assistance from A.K., D.R.G. and R.U.S. and input from H.H.W. D.R., Y.H. and H.H.W. wrote the paper. All other authors discussed results and approved the paper.

Corresponding author

Correspondence to Harris H. Wang.

Ethics declarations

Competing interests

H.H.W. is a scientific advisor of SNIPR Biome, Kingdom Supercultures, Fitbiomics, Arranta Bio, VecX Biomedicines and Genus PLC, and a scientific co-founder of Aclid, all of which are not involved in the study. R.U.S is a co-founder of Kingdom Supercultures. Y.H. and H.H.W. are cofounders of Foli Bio. The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Lisa Maier, Guy Townsend, Tobias Wenzel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Supplementary Methods.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricaurte, D., Huang, Y., Sheth, R.U. et al. High-throughput transcriptomics of 409 bacteria–drug pairs reveals drivers of gut microbiota perturbation. Nat Microbiol 9, 561–575 (2024). https://doi.org/10.1038/s41564-023-01581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01581-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing