Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice

Abstract

Globally, ~340 million children suffer from multiple micronutrient deficiencies, accompanied by high pathogenic burden and death due to multidrug-resistant bacteria. The microbiome is a reservoir of antimicrobial resistance (AMR), but the implications of undernutrition on the resistome is unclear. Here we used a postnatal mouse model that is deficient in multiple micronutrients (that is, zinc, folate, iron, vitamin A and vitamin B12 deficient) and shotgun metagenomic sequencing of faecal samples to characterize gut microbiome structure and functional potential, and the resistome. Enterobacteriaceae were enriched in micronutrient-deficient mice compared with mice fed an isocaloric experimental control diet. The mycobiome and virome were also altered with multiple micronutrient deficiencies including increased fungal pathogens such as Candida dubliniensis and bacteriophages. Despite being antibiotic naïve, micronutrient deficiency was associated with increased enrichment of genes and gene networks encoded by pathogenic bacteria that are directly or indirectly associated with intrinsic antibiotic resistance. Bacterial oxidative stress was associated with intrinsic antibiotic resistance in these mice. This analysis reveals multi-kingdom alterations in the gut microbiome as a result of co-occurring multiple micronutrient deficiencies and the implications for antibiotic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Micronutrient deficiencies reshape gut bacterial community.
Fig. 2: Micronutrient deficiencies alter mycobiome and virome.
Fig. 3: Indicator analyses identify key microbes driving change.
Fig. 4: Low micronutrients expand opportunistic bacteria and fungi.
Fig. 5: Opportunistic bacteria correlate with resistome expansion.
Fig. 6: Bacterial oxidative stress correlates with intrinsic resistance.

Similar content being viewed by others

Data availability

All metadata and annotated taxonomic and functional data necessary to replicate these analyses and Sanger sequencing results are stored in the GitHub repository at https://github.com/armetcal/Littlejohn_Micronutrient_ARG_2023. Raw sequencing reads were submitted to the European Nucleotide Archive (ENA) under the project code PRJEB56324Source data are provided with this paper.

Code availability

All R code necessary to replicate these analyses is stored in the GitHub repository at https://github.com/armetcal/Littlejohn_Micronutrient_ARG_2023.

References

  1. Han, X., Ding, S., Lu, J. & Li, Y. Global, regional, and national burdens of common micronutrient deficiencies from 1990 to 2019: a secondary trend analysis based on the Global Burden of Disease 2019 study. eClinicalMedicine 44, 101299 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bailey, R. L., West, K. P. & Black, R. E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66, 22–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Black, R. Micronutrient deficiency–an underlying cause of morbidity and mortality. Bull. World Health Organ. 81, 79 (2003).

    PubMed  PubMed Central  Google Scholar 

  4. Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The human microbiome and child growth – first 1000 days and beyond. Trends Microbiol. 27, 131–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, E. M. et al. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 6, 7806 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Reinert, P. Infections in malnourished infants and children. Dev. Sante 1993, 4–6 (1993).

  8. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).

    Article  PubMed  Google Scholar 

  10. Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl Acad. Sci. USA 115, E8489–E8498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knight, L. C., Wang, M., Donovan, S. M. & Dilger, R. N. Early-life iron deficiency and subsequent repletion alters development of the colonic microbiota in the pig. Front. Nutr. 6, 120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reed, S. et al. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 7, 9768–9784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, B. et al. Vitamin A deficiency in the early-life periods alters a diversity of the colonic mucosal microbiota in rats. Front. Nutr. 7, 580780 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hibberd, M. C. et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci. Transl. Med. 9, eaal4069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu, J. et al. Vitamin D deficiency in early life regulates gut microbiome composition and leads to impaired glucose tolerance in adult and offspring rats. Food Funct. 14, 5768–5786 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Pham, V. T., Dold, S., Rehman, A., Bird, J. K. & Steinert, R. E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 95, 35–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Belvoncikova, P., Splichalova, P., Videnska, P. & Gardlik, R. The human mycobiome: colonization, composition and the role in health and disease. J. Fungi 8, 1046 (2022).

    Article  Google Scholar 

  18. Gutierrez, M. W. et al. Maturational patterns of the infant gut mycobiome are associated with early-life body mass index. Cell Rep. Med. 4, 100928 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lei, J. et al. Antifungal activity of vitamin D3 against Candida albicans in vitro and in vivo. Microbiol. Res. 265, 127200 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Klassert, T. E. et al. Differential effects of vitamins A and D on the transcriptional landscape of human monocytes during infection. Sci. Rep. 7, 40599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wurtele, H. et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat. Med. 16, 774–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kennedy, E. A. & Holtz, L. R. Gut virome in early life: origins and implications. Curr. Opin. Virol. 55, 101233 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walters, W. A. et al. Longitudinal comparison of the developing gut virome in infants and their mothers. Cell Host Microbe 31, 187–198 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, S., Verma, N. & Taneja, N. The human gut resistome: current concepts and future prospects. Indian J. Med. Res. 150, 345–358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. von Wintersdorff, C. J. H. et al. The gut resistome is highly dynamic during the first months of life. Future Microbiol. 11, 501–510 (2016).

    Article  Google Scholar 

  27. van Schaik, W. The human gut resistome. Phil. Trans. R. Soc. Lond. B 370, 20140087 (2015).

    Article  Google Scholar 

  28. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  29. Holowka, T., van Duin, D. & Bartelt, L. A. Impact of childhood malnutrition and intestinal microbiota on MDR infections. JAC Antimicrob. Resist. 5, dlad051 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. McDonnell, A. & Klemperer, K. Drug-Resistant Infections Are One of the World’s Biggest Killers, Especially for Children in Poorer Countries. We Need to Act Now https://www.cgdev.org/blog/drug-resistant-infections-are-one-worlds-biggest-killers-especially-children-poorer-countries (Center for Global Development, 2022).

  31. Littlejohn, P. T. et al. Multiple micronutrient deficiencies alter energy metabolism in host and gut microbiome in an early-life murine model. Front. Nutr. https://www.frontiersin.org/articles/10.3389/fnut.2023.1151670 (2023).

  32. Micronutrients 101 https://micronutrientforum.org/micronutrients101/ (Micronutrient Forum, 2022).

  33. Forgie, A. J. et al. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med. 18, 135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huus, K. E. et al. Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study. Microbiome 8, 113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner, V. E. et al. Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Sci. Transl. Med. 8, 366ra164 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Robertson, R. C. The gut microbiome in child malnutrition. Nestle Nutr. Inst. Workshop Ser. 93, 133–144 (2020).

    Article  PubMed  Google Scholar 

  37. Jochum, L. & Stecher, B. Label or concept – what is a pathobiont? Trends Microbiol. 28, 789–792 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Sunoto, S., Suharyono, S. & Gracey, M. Gastrointestinal candidiasis in malnourished children with diarrhoea. Paediatr. Indones. 20, 117–129 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Popovic, A. et al. Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut. Nat. Commun. 12, 6729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Dam, S., Pagès, J. M. & Masi, M. Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae. Microbiology 164, 260–267 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, X. & Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21, 1–6 (2014).

    Article  PubMed  Google Scholar 

  43. Zuppi, M., Hendrickson, H. L., O’Sullivan, J. M. & Vatanen, T. Phages in the gut ecosystem. Front. Cell. Infect. Microbiol. 11, 822562 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, F., Aschenbrenner, D., Yoo, J. Y. & Zuo, T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 3, e969–e983 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Ward, T. L., Knights, D. & Gale, C. A. Infant fungal communities: current knowledge and research opportunities. BMC Med. 15, 30 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Soofi, S. et al. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: a cluster-randomised trial. Lancet 382, 29–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Montassier, E. et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol. 6, 1043–1054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, X. et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe 29, 975–987 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Ahmed, M., Mirambo, M. M., Mushi, M. F., Hokororo, A. & Mshana, S. E. Bacteremia caused by multidrug-resistant bacteria among hospitalized malnourished children in Mwanza, Tanzania: a cross sectional study. BMC Res. Notes 10, 62 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. International Institute for Sustainable Development. Antimicrobial Resistance Threatens Development, SDGs: Tripartite Report https://sdg.iisd.org:443/news/antimicrobial-resistance-threatens-development-sdgs-tripartite-report/ (2023).

  51. Antimicrobial Resistance and the United Nations Sustainable Development Cooperation Framework: Guidance for United Nations Country Teams (WHO, 2023); https://www.who.int/publications-detail-redirect/9789240036024

  52. Thurstans, S. et al. Boys are more likely to be undernourished than girls: a systematic review and meta-analysis of sex differences in undernutrition. BMJ Glob. Health 5, e004030 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Reales-Calderón, J. A., Molero, G., Gil, C. & Martínez, J. L. The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies. Future Med. Chem. 8, 1503–1520 (2016).

    Article  PubMed  Google Scholar 

  54. Papp, M. & Solymosi, N. Review and comparison of antimicrobial resistance gene databases. Antibiotics 11, 339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahfouz, N., Ferreira, I., Beisken, S., von Haeseler, A. & Posch, A. E. Large-scale assessment of antimicrobial resistance marker databases for genetic phenotype prediction: a systematic review. J. Antimicrob. Chemother. 75, 3099–3108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fastqc software available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Bioinformatics Group at the Babraham Institute, 2022).

  57. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  58. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clarke, E. L. et al. Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome 7, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Silva, G. G. Z., Green, K. T., Dutilh, B. E. & Edwards, R. A. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data. Bioinformatics 32, 354–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Oksanen, J. et al. vegan: Community Ecology Package (CRAN, 2022).

  63. De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).

    Article  PubMed  Google Scholar 

  64. Kaminski, J. et al. High-specificity targeted functional profiling in microbial communities with ShortBRED. PLoS Comput. Biol. 11, e1004557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS  PubMed  Google Scholar 

  66. UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article  Google Scholar 

  67. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mayneris-Perxachs, J. et al. Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype12. Am. J. Clin. Nutr. 104, 1253–1262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Canadian Institutes of Health Research (CIHR) (to B.B.F., FDN-159935). We thank K. Jones for contribution to the conceptualization of this model; T. Bozorgmehr for assistance with animal experiments; W. Deng for insights into this manuscript; and the Finlay Lab overall for support and feedback. We also thank S. Bloom for the insightful input and feedback on the metagenomics data and antibiotic susceptibility testing; A. Kozik, E. Cunningham-Oakes and R. Robertson for critical feedback on the data; Finlay lab member M. Cirstea for the resources and M. Bains (Robert Hancock Lab, University of British Columbia) for the fluoroquinolone and methicillin antibiotics; and A. Sham for critical feedback on the revised manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.T.L. conceptualized, designed the study, interpreted data, prepared the original and revised manuscript. A.M.-R. performed the functional, taxonomic and correlation bioinformatics analysis, produced Figures, interpreted data, edited and revised the manuscript. H.B.-Y. performed microbial culturing. R.H. assisted with experiments, paper structure and imaging. Y.M.F. assisted with literature review. E.C.P. performed the CARD and MaAsLin2 analyses and contributed to the methods section. S.E.W. performed the Sanger sequencing experiment, analysis and interpretation. All authors were involved in review and editing. P.T.L., A.M.-R. and B.B.F. approved the final revised version of the manuscript.

Corresponding authors

Correspondence to Paula T. Littlejohn or B. Brett Finlay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Sean Moore, Frank Aarestrup and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gut virome assembly is altered by micronutrient deficiencies in early life.

Weanling C57Bl/6 N male mice (n = 10) were given a control or multiple low-micronutrient diet (deficient in vitamin A, B12, B9 [folate], zinc, and iron) ad libitum for 28 days. Shotgun metagenomics sequencing was performed on mouse fecal samples collected at Day 0 and Day 28. (a) Shannon alpha diversity of virome at each time point Day 0 (P = 0.28) and Day 28 (Wilcoxon, P = 0.92) (b) Virile bar plot between groups at the genus level on Day 0 and 28. (c) Virus/bacteriophage altered at the genus level following dietary treatment. All P values were FDR-adjusted (Q). *Q < 0.05, **Q < 0.01, ***Q < 0.001, ****Q < 0.0001. Data shown are from 10 individual mice per group.

Source data

Extended Data Fig. 2 Antibiotic resistome is expanded in micronutrient deficient mice.

ShortBRED and CARD analysis revealed significantly higher antibiotic drug-class genes in the low-micronutrient treated mice. (a) Shannon alpha diversity of resistome (Wilcoxon). (b) Bray-Curtis dissimilarity of resistome (PERMANOVA, D28 LM vs CON P = 0.001, see Supplementary Data). (c) Venn diagram of ARGs that are ≥30% prevalent within a given group. (d) Correlation of antibiotic resistance and mycobiome. (e) Correlation of antibiotic resistance and virome. Corrected P values were calculated using MaAsLin2 and represented as asterisks. *Q < 0.05, **Q < 0.01, *** Q < 0.001, ****Q < 0.0001. Data shown are from 10 individual mice per group.

Source data

Extended Data Fig. 3 Antibiotic resistome is expanded in micronutrient deficient mice.

ShortBRED and CARD analysis revealed significantly higher antibiotic drug-class genes in the low-micronutrient treated mice. (a) RPKM counts of antibiotic drug class per group. Corrected P values were calculated using MaAsLin2 and represented as asterisks. (b) Spearman correlation analysis heatmap of opportunistic bacteria and antibiotic drug class. *Q < 0.05, **Q < 0.01, *** Q < 0.001, ****Q < 0.0001. Data shown are from 10 individual mice per group.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Materials 1 and 2, and Methods.

Reporting Summary

Peer Review File

Supplementary Tables 1–7

ARG master file, drug class, ARG mechanisms, and family. Sanger sequencing results, Dietary ingredients and ARG top hits.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Littlejohn, P.T., Metcalfe-Roach, A., Cardenas Poire, E. et al. Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice. Nat Microbiol 8, 2392–2405 (2023). https://doi.org/10.1038/s41564-023-01519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01519-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing