Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria

Abstract

The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome statistics and reconstruction of ancestral genome sizes for 15 Armillaria species and 5 Physalacriaceae outgroups.
Fig. 2: Plant biomass degradation related genes in Armillaria.
Fig. 3: HGTs into Armillaria and the Physalacriaceae family.
Fig. 4: Enrichment of DEGs of wood-decay, pathogenicity, stress response and other gene families in six RNA-seq datasets.
Fig. 5: PiSSPs of A. luteobubalina induce cell death in host plants.

Similar content being viewed by others

Data availability

New genomic assemblies and annotation generated in this study are deposited under the 1000 Fungal Genome Project at JGI Mycocosm (https://mycocosm.jgi.doe.gov/Armillaria/Armillaria.info.html) and at DDBJ/EMBL/GenBank under the accession numbers PRJNA463936, PRJNA500536, PRJNA500837, PRJNA519860, PRJNA519861, PRJNA571622, PRJNA677793 and PRJNA677794. New RNA-seq datasets used in this study are deposited in the National Center for Biotechnology Information’s Gene Expression Omnibus Archive at https://www.ncbi.nlm.nih.gov/geo/. Accession number for the in planta assay between A.luteobubalina and E.grandis is PRJNA975488, or GSE233220. For the stem invasion assay, the accession numbers are PRJNA972908 for A.ostoyae and PRJNA972989 for A.borealis. Phylogenetically validated gene trees and gene expression heatmaps for various gene families for the six RNA-seq datasets used in this study can be found in the Figshare repository at https://figshare.com/articles/dataset/Gene_trees/22730534 and https://figshare.com/articles/figure/Gene_expression_heatmaps/22778477?file=40472333 respectively. Source data are provided with this paper.

Code availability

Codes associated with the data analyses and visualization are available at https://github.com/nehasahu486/Armillaria-phylogenomics/tree/main.

References

  1. Baumgartner, K., Coetzee, M. P. A. & Hoffmeister, D. Secrets of the subterranean pathosystem of Armillaria: subterranean pathosystem of Armillaria. Mol. Plant Pathol. 12, 515–534 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. Heinzelmann, R. et al. Latest advances and future perspectives in Armillaria research. Can. J. Plant. Pathol. 41, 1–23 (2019).

    Google Scholar 

  3. Sipos, G., Anderson, J. B. & Nagy, L. G. Armillaria. Curr. Biol. 28, PR297–R298 (2018).

    Google Scholar 

  4. Coetzee, M., Wingfield, B. & Wingfield, M. Armillaria root-rot pathogens: species boundaries and global distribution. Pathogens 7, 83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baumgartner, K. Root collar excavation for postinfection control of armillaria root disease of grapevine. Plant Dis. 88, 1235–1240 (2004).

    PubMed  Google Scholar 

  6. Koch, R. A. et al. Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus. Curr. Biol. 31, 3905–3914.e6 (2021).

    CAS  PubMed  Google Scholar 

  7. Ford, K. L., Henricot, B., Baumgartner, K., Bailey, A. M. & Foster, G. D. A faster inoculation assay for Armillaria using herbaceous plants. J. Hortic. Sci. Biotechnol. 92, 39–47 (2017).

    CAS  Google Scholar 

  8. Devkota, P. & Hammerschmidt, R. The infection process of Armillaria mellea and Armillaria solidipes. Physiol. Mol. Plant Pathol. 112, 101543 (2020).

    CAS  Google Scholar 

  9. Sipos, G. et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 1, 1931–1941 (2017).

    PubMed  Google Scholar 

  10. Liang, X. & Rollins, J. A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology 108, 1128–1140 (2018).

    CAS  PubMed  Google Scholar 

  11. O’Connell, R. J. et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060–1065 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Newman, T. E. & Derbyshire, M. C. The evolutionary and molecular features of broad host-range necrotrophy in plant pathogenic fungi. Front. Plant Sci. 11, 591733 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Olson, Å. et al. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. N. Phytol. 194, 1001–1013 (2012).

    Google Scholar 

  14. Shao, D., Smith, D. L., Kabbage, M. & Roth, M. G. Effectors of plant necrotrophic fungi. Front. Plant Sci. 12, 687713 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Koch, R. A., Wilson, A. W., Séné, O., Henkel, T. W. & Aime, M. C. Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evol. Biol. 17, 33 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Baccelli, I. Cerato-platanin family proteins: one function for multiple biological roles? Front. Plant Sci. 5, 769 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Muraosa, Y., Toyotome, T., Yahiro, M. & Kamei, K. Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the human pathogenic fungus Aspergillus fumigatus. Sci. Rep. 9, 3345 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Plett, J. M. & Plett, K. L. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME Commun. 2, 49 (2022).

    PubMed Central  Google Scholar 

  19. Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015).

    CAS  PubMed  Google Scholar 

  20. Ke, H.-M. et al. Mycena genomes resolve the evolution of fungal bioluminescence. Proc. Natl Acad. Sci. USA 117, 31267–31277 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagy, L. G. et al. Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene–phenotype evolution. Mol. Biol. Evol. 34, 35–44 (2017).

    CAS  PubMed  Google Scholar 

  22. Sun, P. et al. Fungal glycoside hydrolase family 44 xyloglucanases are restricted to the phylum Basidiomycota and show a distinct xyloglucan cleavage pattern. iScience 25, 103666 (2022).

    CAS  PubMed  Google Scholar 

  23. Resl, P. et al. Large differences in carbohydrate degradation and transport potential among lichen fungal symbionts. Nat. Commun. 13, 2634 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Collins, C. et al. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J. Proteome Res. 12, 2552–2570 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Daniel, G., Volc, J. & Nilsson, T. Soft rot and multiple T-branching by the basidiomycete Oudemansiella mucida. Mycol. Res. 96, 49–54 (1992).

    Google Scholar 

  26. Sahu, N. et al. Hallmarks of basidiomycete soft- and white-rot in wood-decay -omics data of two armillaria species. Microorganisms 9, 149 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Campbell, W. G. The chemistry of the white rots of wood. Biochem. J. 25, 2023–2027 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarze, F. W. M. R. Wood decay under the microscope. Fungal Biol. Rev. 21, 133–170 (2007).

    Google Scholar 

  29. Gladyshev, E. A., Meselson, M. & Arkhipova, I. R. Massive horizontal gene transfer in bdelloid rotifers. Science 320, 1210–1213 (2008).

    CAS  PubMed  Google Scholar 

  30. Worrall, J. J., Anagnost, S. E. & Zabel, R. A. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89, 199 (1997).

    Google Scholar 

  31. Floudas, D. et al. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genet. Biol. 76, 78–92 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bass, A. J., Robinson, D. G. & Storey, J. D. Determining sufficient sequencing depth in RNA-Seq differential expression studies. Preprint at bioRxiv https://doi.org/10.1101/635623 (2019).

  33. Ernst, J. & Bar-Joseph, Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinf. 7, 191 (2006).

    Google Scholar 

  34. Bautista, D. et al. Comprehensive time-series analysis of the gene expression profile in a susceptible cultivar of tree tomato (solanum betaceum) during the infection of phytophthora betacei. Front. Plant Sci. 12, 730251 (2021).

    PubMed  PubMed Central  Google Scholar 

  35. Westrick, N. M., Smith, D. L. & Kabbage, M. Disarming the host: detoxification of plant defense compounds during fungal necrotrophy. Front. Plant Sci. 12, 651716 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Lah, L. et al. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification: fungal P450 systems in xenobiotic detoxification. Mol. Microbiol. 81, 1374–1389 (2011).

    CAS  PubMed  Google Scholar 

  37. Darwiche, R. et al. Plant pathogenesis–related proteins of the cacao fungal pathogen Moniliophthora perniciosa differ in their lipid-binding specificities. J. Biol. Chem. 292, 20558–20569 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, F. et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5, 1167–1176 (2019).

    CAS  PubMed  Google Scholar 

  39. Saito, N. et al. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol. 49, 1396–1401 (2008).

    CAS  PubMed  Google Scholar 

  40. Cui, F., Brosché, M., Sipari, N., Tang, S. & Overmyer, K. Regulation of ABA dependent wound induced spreading cell death by MYB 108. N. Phytol. 200, 634–640 (2013).

    CAS  Google Scholar 

  41. Liu, H. et al. Copper ions suppress abscisic acid biosynthesis to enhance defence against Phytophthora infestans in potato. Mol. Plant Pathol. 21, 636–651 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. & Cameron, R. K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419, 399–403 (2002).

    CAS  PubMed  Google Scholar 

  43. O’Leary, B., Preston, G. M. & Sweetlove, L. J. Increased β-Cyanoalanine Nitrilase activity improves cyanide tolerance and assimilation in arabidopsis. Mol. Plant 7, 231–243 (2014).

    PubMed  Google Scholar 

  44. Tanaka, S. & Kahmann, R. Cell wall–associated effectors of plant-colonizing fungi. Mycologia 113, 247–260 (2021).

    CAS  PubMed  Google Scholar 

  45. Plett, J. M. et al. Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. N. Phytol. 228, 712–727 (2020).

    CAS  Google Scholar 

  46. Heinzelmann, R., Prospero, S. & Rigling, D. Virulence and stump colonization ability of Armillaria borealis on Norway spruce seedlings in comparison to sympatric Armillaria species. Plant Dis. 101, 470–479 (2017).

    CAS  PubMed  Google Scholar 

  47. Prospero, S., Holdenrieder, O. & Rigling, D. Comparison of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances. For. Pathol. 34, 1–14 (2004).

    Google Scholar 

  48. Collins, C. et al. Proteomic Characterization of Armillaria mellea reveals oxidative stress response mechanisms and altered secondary metabolism profiles. Microorganisms 5, 60 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Campbell, W. G. The chemistry of the white rots of wood. Biochem. J. 26, 1829–1838 (1932).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Flor, H. H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275–296 (1971).

    Google Scholar 

  51. Lam, K.-K., LaButti, K., Khalak, A. & Tse, D. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads. Bioinformatics 31, 3207–3209 (2015).

    CAS  PubMed  Google Scholar 

  52. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).

    CAS  PubMed  Google Scholar 

  54. Kuo, A., Bushnell, B. & Grigoriev, I. V. Fungal Genomics. In Advances in Botanical Research vol. 70 1–52 (Elsevier, 2014).

  55. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013–2015 (2015).

  56. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Almási, É. et al. Comparative genomics reveals unique wood‐decay strategies and fruiting body development in the Schizophyllaceae. N. Phytol. 224, 902–915 (2019).

    Google Scholar 

  59. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Guy, L., Roat Kultima, J. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagy, L. G. et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 5, 4471 (2014).

    CAS  PubMed  Google Scholar 

  66. Alexa, A. & Rahenfuhrer, J. topGO: enrichment analysis for Gene Ontology. https://doi.org/10.18129/B9.bioc.topGO (2016).

  67. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS  PubMed  Google Scholar 

  68. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Google Scholar 

  69. Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    PubMed  Google Scholar 

  70. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  71. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS  PubMed  Google Scholar 

  72. Alexander, W. G., Wisecaver, J. H., Rokas, A. & Hittinger, C. T. Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proc. Natl Acad. Sci. USA 113, 4116–4121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    CAS  PubMed  Google Scholar 

  74. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  75. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323 (2011).

    CAS  Google Scholar 

  76. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinform. Oxf. Engl. 26, 139–140 (2010).

    CAS  Google Scholar 

  78. Plett, J. M. et al. Speciation underpinned by unexpected molecular diversity in the mycorrhizal fungal genus. Pisolithus. Mol. Biol. Evol. 40, msad045 (2023).

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the ‘Momentum’ programme of the Hungarian Academy of Sciences (contract no. LP2019-13/2019 to L.G.N.) the European Research Council (grant no. 758161 to L.G.N.) as well as the Eotvos Lorand Research Network (SA-109/2021). G.S. acknowledges support by the Hungarian National Research, Development, and Innovation Office (GINOP-2.3.2-15-2016-00052). The work (proposals: https://doi.org/10.46936/10.25585/60001060 and https://doi.org/10.46936/10.25585/60001019) conducted by the US Department of Energy (DOE) Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the US DOE operated under contract no. DE-AC02-05CH11231. The research was performed in collaboration with the Genomics and Bioinformatics Core Facility at the Szentágothai Research Centre of the University of Pécs. Ian Hood and Pam Taylor (Scion Research, New Zealand Forest Research Institute Ltd.) kindly provided the A.nova-zealandiae 2840 strain. D. Lindner (Forest Products Laboratory, USA) kindly shared strains of A.borealis and A.ectypa for sequencing. We appreciate the permission of G. Bonito for using the genome of Flagelloscypha sp.

Author information

Authors and Affiliations

Authors

Contributions

N.S., L.G.N., J.P. and G.S. conceived the study. N.S., B.I., J.W.-B., Z.M., K.L.P. and J.P. carried out the laboratory experiments, including DNA/RNA isolation for genome and transcriptome sequencing. N.S., Z.M., B.I., H.-M.K., S.K., E.D., B.B., B.H., M.V., S.C., I.J.T., J.S. and L.G.N. carried out data analysis. E.D. and B.H. annotated CAZymes for the genomes not available in JGI Mycocosm. N.S., J.S., Z.M., S.K. and L.G.N. analysed HGT events. S.A., T.-L.M., A.L., B.A., J.P., A.P., K.B., K.L., M.K., M.Y., R.R. and I.G.V. performed genome sequencing, assembly and annotation. J.P. and K.L.P. performed PiSSP experimental validation. K.L.F. and GDF contributed strains to the genome sequencing. C.B.H. contributed genomic data. L.G.N., N.S., J.P., F.M.M., J.S., S.K., G.S. and D.R. wrote the manuscript. All authors reviewed, checked and approved the manuscript.

Corresponding author

Correspondence to László G. Nagy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Jonathan Schilling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Summary of gene losses and gains from COMPARE mappings.

a) Duplications (green) and losses (red) at each node for Dataset1. Bootstrap support values less than 80 are shown in blue. b) Transposable elements assessment for Armillaria and the Physalacriaceae.

Source data

Extended Data Fig. 2 GO terms enriched in duplicated genes.

Significantly enriched GO terms in the 1473 orthogroups, inferred by 2913 duplications at Armillaria MRCA. GO enrichment analysis was performed using one-sided Fisher’s test with the weight01 algorithm in the topGO package (R), with p-value ≤ 0.05 considered as significant. X-axis shows the percentage of significant genes from the total number of genes, y-axis shows p-values. Blue shows lower and red shows higher p-values. GO terms that had at least 30% of genes significant from the total number of genes are mentioned on the plot (see Supplementary Table 2 for the complete list of enriched GO terms).

Source data

Extended Data Fig. 3 Plant biomass degradation related genes in Armillaria.

Phylogenetic PCAs and their respective loading factors for PCWDE gene families. Species abbreviations are colored according to nutritional modes.

Source data

Extended Data Fig. 4 Expression of HT and VT genes in A. ostoyae developmental transcriptome.

Violin plot showing gene expression of phylogenetically validated HT and VT genes in A. ostoyae fruiting body development transcriptome. Y-axis shows log2 transformed expression values, and x-axis shows the sample comparisons for each experiment.

Source data

Extended Data Fig. 5 Experimental setup.

Setup for the new RNA Seq experiments used in this study. a) Setup for the time-course experiment. b) Setup for the stem invasion assay.

Extended Data Fig. 6 Enrichment of differentially expressed genes of selected gene families in 6 RNA-Seq datasets.

The heatmap shows enrichment ratios for 23 gene groups (‘Ergothione: removed due to no enrichment) from aggregated differential gene expression data across 6 experiments (a - upregulated, b - downregulated genes). Y-axis shows the sample comparison for each dataset, with number of DEGs shown as a barplot at right. In the heatmap, warmer colors mean higher enrichment ratios (for complete list of odds ratios, see Supplementary Table 5).

Source data

Extended Data Fig. 7 Expression heatmaps in A. luteobubalina.

Heatmaps showing gene expression along the time course in A. luteobubalina for gene families related to host immune suppression, oxidative stress, detoxification, and cytotoxicity. Warmer color depicts higher expression.

Source data

Extended Data Fig. 8 Pathogenicity-induced SSP expression and conservation in A. luteobubalina.

A) Heatmap shows log2 fold changes for annotated SSPs, upregulated in at least one-time point. Red shows higher and blue depicts lower logFC; followed by presence/absence matrix of homologs in 131 species (Dataset 2). X-axis shows ProteinIDs for both heatmap and presence/absence matrix. Y-axis shows sample comparisons in the heatmap; and species order in presence/absence matrix.

Source data

Extended Data Fig. 9 Copy numbers and conservation of Armlut1_1348401.

a) Summary of copy-numbers of the orthogroup OG0000784, comprising PiSSP Armlut1_1348401. b) Trimmed multiple sequence alignment of proteins in OG0000784.

Source data

Extended Data Fig. 10 Copy numbers and conservation of Armlut1_1165297.

a) Summary of copy-numbers of the orthogroup OG0000401, comprising PiSSP Armlut1_1165297. b) Trimmed multiple sequence alignment of proteins in OG0000401.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Note 1.

Reporting Summary

Peer Review File

Supplementary Table 1

New Armillaria genomes, list of species in each dataset used in this study, and their respective species trees.

Supplementary Table 2

Enriched genes in Armillaria duplications, and novel-core genes in Armillaria clade.

Supplementary Table 3

CAZymes and PCWDEs identified in Dataset 2, copy numbers of substrate-based PCWDEs in each species, PCA loadings from phylogenetic PCA, co-enriched CAZy OGs and their domain architecture.

Supplementary Table 4

HGTs in Physalacriaceae using AI and phylogenetic validation form gene trees.

Supplementary Table 5

DEGs in six RNA-seq experiments and odds ratio for different functional categories.

Supplementary Table 6

Expression data for A.luteobubalina SSPs in the in planta assay, and virulence factors and OG counts in stem invasion assays.

Source data

Source Data Fig. 1

Statistical data for genome statistics in Fig. 1.

Source Data Fig. 2

Statistical data for box plot in Fig. 2b.

Source Data Fig. 3

Statistical data for Fig. 3a,c.

Source Data Fig. 4

Statistical data for Fig. 4a,b.

Source Data Fig. 5

Unprocessed raw pictures for Fig. 5b.

Source Data Extended Data Fig. 1/Table 1

Statistical data for Extended Data Fig. 1b.

Source Data Extended Data Fig. 2/Table 2

Statistical data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3/Table 3

Statistical data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4/Table 4

Statistical data for violin plot in Extended Data Fig. 4.

Source Data Extended Data Fig. 6/Table 6

Statistical data for Extended Data Fig. 6a,b.

Source Data Extended Data Fig. 7/Table 7

Statistical data for Extended Data Fig. 7.

Source Data Extended Data Fig. 8/Table 8

Statistical data for Extended Data Fig. 8.

Source Data Extended Data Fig. 9/Table 9

Statistical data for Extended Data Fig. 9b.

Source Data Extended Data Fig. 10/Table 10

Statistical data for Extended Data Fig. 10b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, N., Indic, B., Wong-Bajracharya, J. et al. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat Microbiol 8, 1668–1681 (2023). https://doi.org/10.1038/s41564-023-01448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01448-1

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology