Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer

Abstract

Epidemiological studies have indicated an association between statin use and reduced incidence of colorectal cancer (CRC), and work in preclinical models has demonstrated a potential chemopreventive effect. Statins are also associated with reduced dysbiosis in the gut microbiome, yet the role of the gut microbiome in the protective effect of statins in CRC is unclear. Here we validated the chemopreventive role of statins by retrospectively analysing a cohort of patients who underwent colonoscopies. This was confirmed in preclinical models and patient cohorts, and we found that reduced tumour burden was partly due to statin modulation of the gut microbiota. Specifically, the gut commensal Lactobacillus reuteri was increased as a result of increased microbial tryptophan availability in the gut after atorvastatin treatment. Our in vivo studies further revealed that L. reuteri administration suppressed colorectal tumorigenesis via the tryptophan catabolite, indole-3-lactic acid (ILA). ILA exerted anti-tumorigenic effects by downregulating the IL-17 signalling pathway. This microbial metabolite inhibited T helper 17 cell differentiation by targeting the nuclear receptor, RAR-related orphan receptor γt (RORγt). Together, our study provides insights into an anti-cancer mechanism driven by statin use and suggests that interventions with L. reuteri or ILA could complement chemoprevention strategies for CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Statin-modulated microbiota mediates chemopreventive effects.
Fig. 2: Atorvastatin expands the gut commensal L. reuteri.
Fig. 3: Metabolically active L. reuteri suppresses CRC development.
Fig. 4: ILA is essential to the anti-cancer effects of L. reuteri.
Fig. 5: Statins induce a microenvironment with low TH17 responses.
Fig. 6: ILA suppresses TH17 differentiation by targeting the RORγt.

Similar content being viewed by others

Data availability

Raw reads of 16S rRNA-sequencing were uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive database (accession number: PRJNA831634; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA831634). RNA-sequencing data have been deposited in the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) of NCBI and are accessible through the GEO Series accession number GSE201453.

Datasets analysed during the current study are the TCGA colon and rectal cancer datasets, which are available in the TCGA database, and GSE81375, which is available in the GEO database. Source data are provided with this paper.

References

  1. Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).

    Article  PubMed  Google Scholar 

  2. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  3. Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Logan, R. F. et al. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Burn, J. et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 395, 1855–1863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drew, D. A., Cao, Y. & Chan, A. T. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat. Rev. Cancer 16, 173–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poynter, J. N. et al. Statins and the risk of colorectal cancer. N. Engl. J. Med. 352, 2184–2192 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Cheung, K. S. et al. Statins reduce the progression of non-advanced adenomas to colorectal cancer: a postcolonoscopy study in 187,897 patients. Gut 68, 1979–1985 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ren, Q. W. et al. Statin associated lower cancer risk and related mortality in patients with heart failure. Eur. Heart J. 42, 3049–3059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang, W. L. et al. Differential preventive activity of sulindac and atorvastatin in Apc(+/Min-FCCC) mice with or without colorectal adenomas. Gut 67, 1290–1298 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Swamy, M. V. et al. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res. 66, 7370–7377 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Reddy, B. S. et al. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer Res. 66, 4542–4546 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  16. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Stockinger, B., Shah, K. & Wincent, E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 18, 559–570 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. The Top 300 of 2019, ClinCalc DrugStats Database Version 2021.10 (ClinCalc.com, 2021).

  21. Zhao, R. et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159, 969–983.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slowicka, K. et al. Zeb2 drives invasive and microbiota-dependent colon carcinoma. Nat. Cancer 1, 620–634 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu, Y. N. et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 6, 32013–32026 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chae, W. J. et al. Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc. Natl Acad. Sci. USA 107, 5540–5544 (2010).

  30. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, J. Y. et al. Intestinal epithelial TBK1 prevents differentiation of T-helper 17 cells and tumorigenesis in mice. Gastroenterology 159, 1793–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Xiao, S. et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar, N. et al. Identification of SR2211: a potent synthetic RORgamma-selective modulator. ACS Chem. Biol. 7, 672–677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ricciardiello, L., Ahnen, D. J. & Lynch, P. M. Chemoprevention of hereditary colon cancers: time for new strategies. Nat. Rev. Gastroenterol. Hepatol. 13, 352–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Katona, B. W. & Weiss, J. M. Chemoprevention of colorectal cancer. Gastroenterology 158, 368–388 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Grady, W. M. & Markowitz, S. D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 60, 762–772 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Gohlke, B. O. et al. Real-world evidence for preventive effects of statins on cancer incidence: a trans-Atlantic analysis. Clin. Transl. Med 12, e726 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ananthakrishnan, A. N. et al. Statin use is associated with reduced risk of colorectal cancer in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 14, 973–979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bardou, M., Barkun, A. & Martel, M. Effect of statin therapy on colorectal cancer. Gut 59, 1572–1585 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Yoo, W. et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mu, Q., Tavella, V. J. & Luo, X. M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 9, 757 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sung, V. et al. Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial. Brit. Med. J. 348, g2107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oliva, S. et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharm. Ther. 35, 327–334 (2012).

    Article  CAS  Google Scholar 

  48. Dinleyici, E. C., Group, P. S. & Vandenplas, Y. Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr. 103, e300–e305 (2014).

    PubMed  Google Scholar 

  49. Bell, H. N. et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40, 185–200.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Sugimura, N. et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut https://doi.org/10.1136/gutjnl-2020-323951 (2021).

    Article  PubMed  Google Scholar 

  51. Hezaveh, K. et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 55, 324–340.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17, 997–1004 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Hurtado, C. G., Wan, F., Housseau, F. & Sears, C. L. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology 155, 1706–1715 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brennan, C. A. et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 13, 1987780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wyatt, M. & Greathouse, K. L. Targeting dietary and microbial tryptophan-indole metabolism as therapeutic approaches to colon cancer. Nutrients https://doi.org/10.3390/nu13041189 (2021).

  58. Murray, I. A., Patterson, A. D. & Perdew, G. H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat. Rev. Cancer 14, 801–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shah, K. et al. Cell-intrinsic aryl hydrocarbon receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat. Commun. 13, 1827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawajiri, K. et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc. Natl Acad. Sci. USA 106, 13481–13486 (2009).

  62. Sekine, H. et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharide-induced septic shock. Mol. Cell. Biol. 29, 6391–6400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diaz-Diaz, C. J. et al. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann. Surg. 264, 429–436 (2016).

    Article  PubMed  Google Scholar 

  64. Coogan, P. F., Smith, J. & Rosenberg, L. Statin use and risk of colorectal cancer. J. Natl Cancer Inst. 99, 32–40 (2007).

    Article  PubMed  Google Scholar 

  65. Siddiqui, A. A. et al. The long-term use of statins is associated with a decreased incidence of adenomatous colon polyps. Digestion 79, 17–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Burberry, A. et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 582, 89–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Secombe, K. R. et al. Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols. Gut Microbes 13, 1979878 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gheorghe, C. E. et al. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 13, 1941711 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sapi, J. et al. Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy. PLoS ONE 10, e0142190 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fujii, M., Matano, M., Nanki, K. & Sato, T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10, 1474–1485 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Nielsen, H. V. et al. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 3, e00177-00112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rijnen, L., Bonneau, S. & Yvon, M. Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl. Environ. Microbiol. 65, 4873–4880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, J. X. et al. ZFP90 drives the initiation of colitis-associated colorectal cancer via a microbiota-dependent strategy. Gut Microbes 13, 1–20 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  PubMed  Google Scholar 

  83. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and individuals for their participation in our study; C.-Z. Guo and the staff at the Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine for technical support in flow cytometry; and W.-H. Jiang (CAS Center for Excellence in Molecular Plant Sciences) for electroporation system usage. This project was supported by grants from the National Key R&D Program of China (2020YFA0509200 to J.-Y.F.), the National Natural Science Foundation of China (81830081to J.-Y.F., 31970718 to J.-Y.F., 81972203 to Y.-X.C., 82250005 to J.-Y.F.), the Shanghai Municipal Health Commission, Collaborative Innovation Cluster Project (2019CXJQ02 to J.-Y.F.), the Clinical Research Plan of SHDC (SHDC2020CR1034B to J.-Y.F.), the Shanghai Sailing Program (22YF1438500 to J.-X.H., 21YF1425600 to J.-Y.F.), the Innovative Research Team of high-level local universities in Shanghai (SSMU-ZLCX20180200 to J.-Y.F.) and Major Health Science and Technology Projects in Zhejiang Province (WKJ-ZJ-2217 to H.X.). Parts of Extended Data Figs. 14 and 6 were generated using templates from Servier Medical Art (https://smart.servier.com/), provided by Servier and licensed under a Creative Commons Attribution 3.0 unported license (https://creativecommons.org/licenses/by/3.0/).

Author information

Authors and Affiliations

Authors

Contributions

J.-X.H., Z.-H.T. and J.-Y.F. conceived the project; J.-X.H. and Z.-H.T. designed and performed experiments, analysed data, made figures and drafted the manuscript; J.-L.W. collected and analysed CRA recurrence data in Cohort 1; L.Z. helped with electroporation; C.-Y.Y., Z.-R.K., Y.X., S.L., H.-M.C., W.S., T.-H.Z., C.-B.Z. and J.H. provided fruitful discussions; J.L. helped with isolation of colonic lamina propria cells; Y.C. and Q.L. helped with pathological diagnosis; J.X., E.Z., M.W., J.C. and Z.W. provided faecal and tissue samples of CRC patients in Cohorts 2 and 3; H.C. performed PS matching in Cohort 1 and helped with statistical analysis; H.X., Y.-X.C. and J.-Y.F. supervised the study; J.-X.H., Z.-H.T., J.-L.W., H.X., Y.-X.C. and J.-Y.F. revised the draft with input from all authors.

Corresponding authors

Correspondence to Hua Xiong, Ying-Xuan Chen or Jing-Yuan Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Robert Jenq, Peter Turnbaugh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Statin-modulated microbiota mediates chemopreventive effects.

a, Scheme for the experiment design. ApcMin mice were administered 2% Tween 80 (vehicle control), or atorvastatin (20 mg/kg). b, Body weight of ApcMin mice receiving vehicle control or atorvastatin was recorded (n = 10 mice per group). c, Representative macroscopic images of colons. (d-h) d, Scheme for the experiment design. ApcMin mice were administered 2% Tween 80 (vehicle control), or lovastatin (20 mg/kg) (n = 10 mice per group). e, Representative macroscopic images of colons. f, Colon tumor number under different treatments. g, Colon tumor volume under different treatments. h, Representative H&E staining of colons under different treatments. i-m, i, Scheme for the experiment design. ApcMin mice were administered 10% DMSO (vehicle control), or fenofibrate (100 mg/kg) (n = 10 mice per group). j, Representative macroscopic images of colons. k, Colon tumor number under different treatments. l, Colon tumor volume under different treatments. m, Representative H&E staining of colons under different treatments. n, Scheme for the experiment design. Microbiota-depleted ApcMin mice were administered vehicle control, or atorvastatin. o, Representative macroscopic images of colons. p, Scheme for the experiment design. Microbiota-depleted ApcMin mice were administered feces from mice receiving vehicle control or atorvastatin (Ator). q, Representative macroscopic images of colons. Data with error bars represent the mean ± s.d. Data were analyzed by two-tailed Welch’s t test (b, f, g), and two-tailed unpaired Student’s t test (b, k, l).

Extended Data Fig. 2 Atorvastatin expands the gut commensal L. reuteri.

a, Scheme for the experiment design. Feces were collected to perform 16S rRNA-sequencing on ApcMin mice receiving four-week vehicle control or atorvastatin. b, Venn diagram showing the genera enriched in the atorvastatin group (the current study, 13), genera decreased during CRC development (Yu et al., 8), and both (1). Venn diagram showing the genera enriched in the vehicle control group (the current study, 9), and genera increased during CRC development (Yu et al., 5). c, Real-time PCR was performed to detect the abundance of eight common Lactobacillus species in feces from ApcMin mice receiving vehicle control or atorvastatin (n = 8 or 9 mice for vehicle control or atorvastatin treatment, respectively). Lpla, L. plantarum; Lbrev, L. brevis; Lcase, L. casei; Lmuri, L. murinus; Lsalirv, L. salivarius; Lrham, L. rhamnosus; Lferm, L. fermentum; Ldelb, L. delbrueckii. d, Real-time PCR was performed to detect the abundance of L. reuteri in ApcMin mice receiving fecal microbiota from vehicle control- or atorvastatin-treated mice (n = 10 mice per group). e, Scheme for the trial design. Feces were collected from individuals before and after atorvastatin intervention. f, OD600 values for L. reuteri treated with atorvastatin (1 μM) for 16 h. All are grown in MRS broth (n = 5 biologically independent samples per group). g, Real-time PCR was performed to detect the mRNA expression of Ido1 in colonic lamina propria cells from ApcMin mice receiving vehicle control or atorvastatin (n = 5 mice per group). h, Real-time PCR was performed to detect the mRNA expression of Ido1 in mice colon organoids treated with atorvastatin (n = 3 biologically independent samples per group). Data with error bars represent the mean ± s.d. Data were analyzed by two-tailed unpaired Student’s t test (c, f, g, h), and two-tailed Welch’s t test (d).

Extended Data Fig. 3 Metabolically-active L. reuteri suppresses CRC development.

a, Scheme for the experiment design. Microbiota-depleted ApcMin mice were administered PBS, heat-killed L. reuteri (108 CFU/100 μL), or live L. reuteri (108 CFU/100 μL). b, Representative macroscopic images of colons. c, Scheme for the experiment design. ApcMin mice were administered PBS, L. reuteri cell-free supernatant (CFS), or L. reuteri cell-free supernatant treated with proteinase K (CFSK). d, Representative macroscopic images of colons. e, Tryptophan metabolism through the host pathways (serotonin and kynurenine pathways) and microbial pathway (indole pathway). IDO1: Indoleamine 2,3-Dioxygenase 1; TPH1: Tryptophan hydroxylase 1; TMO: Tryptophan 2-Monooxygenase; TrD: Tryptophan Decarboxylase; IAM: Indole-3-Acetamide; IAA: Indole−3−Acetic Acid; IAld: Indole-3-Aldehyde; IAAld: Indole-3-Acetaldehyde; ArAT: Aromatic amino acid aminotransferase; IPYA: Indole-3-Pyruvate; ILA: Indole-3-Lactic Acid; IA: Indoleacrylic Acid; IPA: Indole-3-Propionic Acid; TNA: Tryptophanase. f, Heatmap showing hierarchical clustering of Spearman correlation coefficients between fecal bacterial abundance and selected tryptophan catabolites. *P < 0.05; **P < 0.01.

Extended Data Fig. 4 ILA is essential to the anti-cancer effects of L. reuteri.

a, Scheme for the experiment design. ApcMin mice were administered 0.01% DMSO (vehicle control), or ILA (0.1 mg/kg). b, Quantification of fecal ILA in feces from ApcMin mice receiving vehicle control or ILA (n = 6). c, Representative macroscopic images of colons. d, Schematic for the generation of L. reuteri ∆ArAT by homologous recombination. e, PCR was performed to verify the mutant. f, Sanger sequencing was performed to validate the mutant. g, Scheme for the experiment design. Microbiota-depleted ApcMin mice were administered PBS, WT L. reuteri (108 CFU/ 100 μL), or L. reuteri ΔArAT (108 CFU/ 100 μL). h, Representative macroscopic images of colons. Data with error bars represent the mean ± s.d. Data were analyzed by two-tailed unpaired Student’s t test (b).

Extended Data Fig. 5 Statins induce a microenvironment with low TH17 responses.

a, b, KEGG pathway analysis of (a) colonic epithelium and (b) lamina propria cells listed by P value. c, d, Gene Set Enrichment Analysis (GSEA) was performed on (a) colonic epithelium and (b) lamina propria cells using the web tool from Broad Institute. NES, normalized enrichment score. e, The correlation between the L. reuteri abundance and IL-17A expression in adjacent normal tissues from CRC patients (Cohort 3). f, Real-time PCR analysis for Rorc expression in lamina propria under different treatments (n = 5). g, h, j, l, and m, Representative dot plots gated on CD4+ T cells. i, k, Statistical analysis of the percentages of IFNγ+ CD4+ T cells (i) and FOXP3+ CD4+ T cells (k) in colon lamina propria under different treatments. (n = 5). Data with error bars represent the mean ± s.d. Data were analyzed by two-tailed Spearman correlation analysis (e), and two-tailed unpaired Student’s t test (f, i, k).

Extended Data Fig. 6 ILA suppresses TH17 differentiation by targeting the RORγt.

a, Schematic of in vitro TH17 polarization. b, Representative dot plots showing IL-17A production by naive CD4+ T cells cultured in TH17-polarizing conditions. c, Real-time PCR analysis for Rorc expression in in vitro polarized TH17 cells (n = 3). d, Schematic of MST. e, Flow cytometry of IL-17A production by naive CD4+ T cells cultured in TH17-polarizing conditions and treated with ILA, CH-223191 (an AHR antagonist), or both. f, g, Real-time PCR analysis for Cyp1a1 expression in colon epithelium under different treatments (n = 5). h, i, Representative confocal images showing ZO-1 expression under different treatments. ZO-1 (green), and DAPI (blue). j-m, (j) Scheme for the experiment design. The protective effect of ILA on CRC initiation was assessed in the context of AHR blockade (n = 10 mice per group). (k) Representative macroscopic images of colons. (l) Colon tumor number under different treatments. (m) Colon tumor volume under different treatments. n, Schematic diagram of the relationship among atorvastatin, L. reuteri-derived ILA, TH17 cells, and tumorigenesis. Data with error bars represent the mean ± s.d. Data were analyzed by two-tailed unpaired Student’s t test (c, f, g), and one-way ANOVA with Holm-Sidak or Tukey’s test (l, m).

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, and the full trial protocol.

Reporting Summary

Supplementary Tables

Supplementary Table 1. Baseline characteristics of Cohort 1. Table 2. Detailed information of healthy participants. Table 3. Genes regulated by atorvastatin in the current study and in GSE81375. Table 4. Concentrations of tryptophan and tryptophan catabolites in faeces from mice. Table 5. List of PCR primers.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 4

Unprocessed gels.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JX., Tao, ZH., Wang, JL. et al. Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nat Microbiol 8, 919–933 (2023). https://doi.org/10.1038/s41564-023-01363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01363-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer