Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteriophage genome engineering with CRISPR–Cas13a

Abstract

Jumbo phages such as Pseudomonas aeruginosa ФKZ have potential as antimicrobials and as a model for uncovering basic phage biology. Both pursuits are currently limited by a lack of genetic engineering tools due to a proteinaceous ‘phage nucleus’ structure that protects from DNA-targeting CRISPR–Cas tools. To provide reverse-genetics tools for DNA jumbo phages from this family, we combined homologous recombination with an RNA-targeting CRISPR–Cas13a enzyme and used an anti-CRISPR gene (acrVIA1) as a selectable marker. We showed that this process can insert foreign genes, delete genes and add fluorescent tags to genes in the ФKZ genome. Fluorescent tagging of endogenous gp93 revealed that it is ejected with the phage DNA while deletion of the tubulin-like protein PhuZ surprisingly had only a modest impact on phage burst size. Editing of two other phages that resist DNA-targeting CRISPR–Cas systems was also achieved. RNA-targeting Cas13a holds great promise for becoming a universal genetic editing tool for intractable phages, enabling the systematic study of phage genes of unknown function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Screening for ΦKZ recombinants by CRISPR–Cas13a counter selection.
Fig. 2: Absence of PhuZ causes mispositioning of the phage nucleus.
Fig. 3: Fluorescent labelling of an inner body protein of ΦKZ.
Fig. 4: Genetic engineering of the therapeutic jumbo phage OMKO1.
Fig. 5: Genetic engineering of podophage PaMx41.

Similar content being viewed by others

Data availability

All relevant data are included in the paper and/or its supplementary information files. The complete genome sequence of OMKO1 was deposited in GenBank under accession no. ON631220. All strains and plasmids are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The data analysis code is available from public repositories at https://zenodo.org/record/6324407#.YiAjrejMI2w.

References

  1. Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. & Lu, T. K. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80, 523–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doss, J., Culbertson, K., Hahn, D., Camacho, J. & Barekzi, N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms.Viruses 9, 50 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nobrega, F. L., Costa, A. R., Kluskens, L. D. & Azeredo, J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 23, 185–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Łusiak-Szelachowska, M. et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 27, 295–304 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weber-Dąbrowska, B. et al. Bacteriophage procurement for therapeutic purposes. Front. Microbiol. 7, 1177 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. Lu, T. K. & Koeris, M. S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 14, 524–531 (2011).

    Article  PubMed  Google Scholar 

  8. Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68, 151–159 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahichi, F., Synnott, A. J., Yamamichi, K., Osada, T. & Tanji, Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett. 295, 211–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda, T. et al. Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery 137, 639–646 (2005).

    Article  PubMed  Google Scholar 

  12. Monteiro, R., Pires, D. P., Costa, A. R. & Azeredo, J. Phage therapy: going temperate? Trends Microbiol. 27, 368–378 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Kilcher, S. & Loessner, M. J. Engineering bacteriophages as versatile biologics. Trends Microbiol. 27, 355–367 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Marinelli, L. J., Hatfull, G. F. & Piuri, M. Recombineering: a powerful tool for modification of bacteriophage genomes. Bacteriophage 2, 5–14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64, 475–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Hille, F. et al. The Biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Mayo-Muñoz, D. et al. Anti-CRISPR-based and CRISPR-based genome editing of Sulfolobus islandicus rod-shaped virus 2.Viruses 10, 695 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Malone, L. M., Birkholz, N. & Fineran, P. C. Conquering CRISPR: how phages overcome bacterial adaptive immunity. Curr. Opin. Biotechnol. 68, 30–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Guan, J. & Bondy-Denomy, J.Intracellular organization by jumbo bacteriophages.J. Bacteriol. 203, e00362-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meeske, A. J. et al. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR–Cas immunity. Science 369, 54–59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR–C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meeske, A. J. & Marraffini, L. A. RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol. Cell 71, 791–801.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M Iyer, L., Anantharaman, V., Krishnan, A., Maxwell Burroughs, A. & Aravind, L. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts.Viruses 13, 63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aylett, C. H. S., Izoré, T., Amos, L. A. & Löwe, J. Structure of the tubulin/FtsZ-like protein TubZ from Pseudomonas bacteriophage ΦKZ. J. Mol. Biol. 425, 2164–2173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaikeeratisak, V. et al. The phage nucleus and tubulin spindle are conserved among large Pseudomonas phages. Cell Rep. 20, 1563–1571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaikeeratisak, V. et al. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177, 1771–1780.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kraemer, J. A. et al. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149, 1488–1499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, W., Thomas, J. A., Cheng, N., Black, L. W. & Steven, A. C. Bubblegrams reveal the inner body of bacteriophage ΦKZ. Science 335, 182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas, J. A. et al. Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant Pseudomonas aeruginosa phage ΦKZ. Mol. Microbiol. 84, 324–339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan, B. K. et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 26717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan, B. K. et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 60–66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sepúlveda-Robles, O., Kameyama, L. & Guarneros, G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl. Environ. Microbiol. 78, 4510–4515 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cruz-Plancarte, I., Cazares, A. & Guarneros, G. Genomic and transcriptional mapping of PaMx41, archetype of a new lineage of bacteriophages infecting Pseudomonas aeruginosa. Appl. Environ. Microbiol. 82, 6541–6547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huiting, E. et al. Bacteriophages antagonize cGAS-like immunity in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2022.03.30.486325 (2022).

  42. Skennerton, C. T. et al. Phage encoded H-NS: a potential Achilles heel in the bacterial defence system. PLoS ONE 6, e20095 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pul, U. et al. Identification and characterization of E. coli CRISPR–cas promoters and their silencing by H-NS. Mol. Microbiol. 75, 1495–1512 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Vlot, M. et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Res. 46, 873–885 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Bryson, A. L. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR–Cas9. mBio 6, e00648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. et al. Covalent modifications of the bacteriophage genome confer a degree of resistance to bacterial CRISPR systems.J. Virol. 94, e01630-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR–Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Adler, B. et al. RNA-targeting CRISPR–Cas13 provides broad-spectrum phage immunity. Preprint at bioRxiv https://doi.org/10.1101/2022.03.25.485874 (2022).

  51. Krylov, V. N. et al. Pseudomonas bacteriophage ΦKZ contains an inner body in its capsid. Can. J. Microbiol. 30, 758–762 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. van Beljouw, S. P. B. et al. The gRAMP CRISPR–Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373, 1349–1353 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Özcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720–725 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Bondy-Denomy lab was supported by the National Institutes of Health (no. R01GM127489 and R01AI171041), Vallee Foundation, Searle Scholarship, Innovative Genomics Institute and University of California San Francisco Program for Breakthrough Biomedical Research funded in part by the Sandler Foundation. This work was also supported by research funds from Felix Biotechnology. We thank L. Marraffini (The Rockefeller University) for providing the plasmid pAM383. We thank P. Turner and B. Chan (Yale University) for providing the OMKO1 phage and P. aeruginosa clinical isolates. We thank G. Guarneros Peña at Centro de Investigación y de Estudios Avanzados for providing the PaMx41 phage. We thank T. Rotstein for his generous assistance with NGS data processing and interpretation. We thank members of the Bondy-Denomy laboratory for productive conversations and generous suggestions for our work.

Author information

Authors and Affiliations

Authors

Contributions

J.G. designed and performed the experiments, analysed the data and wrote the manuscript. A.O.-B. performed phage plaque and microplate liquid assays and analysed the data. S.D.M. designed and constructed the Cas13a crRNA vectors. S.K. conducted the phage plaque assays for phage PaMx41. J.B. performed NGS and analysed the data. J.B.-D. conceived and supervised the study, designed the experiments, acquired the funding and wrote the manuscript.

Corresponding author

Correspondence to Joseph Bondy-Denomy.

Ethics declarations

Competing interests

J.B.-D. is a scientific advisory board member of SNIPR BIOME, Excision BioTherapeutics and Leapfrog Bio, and a scientific advisory board member and cofounder of Acrigen Biosciences. The Bondy-Denomy laboratory receives research support from Felix Biotechnology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Anne Chevallereau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plaque efficiency assays of distinct crRNAs of CRISPR-Cas13a targeting transcripts of diverse ΦKZ genes.

Ten-fold serial dilutions of ΦKZ spotted on lawns expressing cas13 and crRNAs targeting the indicated genes. The crRNA targeting orf120 highlighted in the red frame has been used for ΦKZ genome engineering. NT, non-targeting.

Extended Data Fig. 2 One-step growth curves of engineered ФKZ variants.

One-step growth curve experiment was performed to determine the latent time period and burst size of engineered phages. Representative plots are shown for each phage strain. The burst sizes are shown in brackets after of each ФKZ variant, representing the mean ± standard error of three or four biologically independent replicates.

Extended Data Fig. 3 Sequence alignment of wild type ΦKZ and three escape mutants at the engineered genomic site.

Escape mutants were isolated and verified by PCR and sequencing. The WT orf120 sequence is highlighted in blue and the downstream region is highlighted in grey. The stop codon (TGA) of orf120 is highlighted in green and Escape mutant #3 reconstitutes it to TAG. The sequence in the red frame matches the spacer sequence of the crRNA that was used to target and eliminate WT phages. Deletions were indicated by dashed lines and their corresponding numbers of absent base pairs.

Source data

Extended Data Fig. 4 Determination of host range of ΦKZ ∆phuZ and ∆orf93 mutants by plaque assay on P. aeruginosa clinical strains.

Spot-titration of the indicated ΦKZ phages on lawns of clinical isolates of P. aeruginosa (FB-XX).

Extended Data Fig. 5 Failure of genetic editing the shell gene (orf54) in ΦKZ.

(A) Schematic of genomes of WT ΦKZ and three mutated orf54 variants, “∆orf54”, “FP-orf54”, and “orf54-FP”, at the editing site. orf54, acrVIA1, and fluorescent protein (FP) are shown as blue, red, and green rectangles, respectively. F and R indicate forward and reverse primers, respectively, for PCR confirmation of orf54 engineering. (B) PCR confirmation of the indicated orf54 mutants using their corresponding pair of primers. All three mutants generated multiple bands, including a band in the same size as the single band produced by WT. PCR-based screening for engineered ΦKZ orf54 variants have been independently repeated at least three times yielding similar results. (C) Genome alignment of WT phage with the isolated orf54pseudo knock-out” mutant (“∆orf54”). A gene cluster of ~ 7 kbp (orf206 - orf216) was missing in the mutant, likely as a result of phage packaging capacity. The majority of the editing plasmid used to generate recombinants was at the editing site, leaving orf54 intact.

Source data

Extended Data Fig. 6 Host range assay of engineered OMKO1 variants.

Host ranges were determined by microplate liquid assay at MOI of 0.01 and 1 on 22 P. aeruginosa clinical strains. The values are presented as the mean liquid assay scores across three independent experiments. Asterisks (*) indicate significant difference between WT and engineered strains as determined by two-sided Students’ T-tests (p < 0.05). The color intensity of each phage-host combination reflects the liquid assay score, which represents how well the phage strain can repress the growth of a given bacterial host. No inhibition of bacterial growth is reflected by a liquid assay score of 0, and complete suppression would result in a score of 100.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Reporting Summary

Supplementary Video 1

Time-lapse video of a P. aeruginosa cell infected by a ФKZ ΔphuZ mutant phage.

Supplementary Video 2

Time-lapse video of a P. aeruginosa cell infected by a ФKZ gp93-mNeonGreen mutant phage.

Supplementary Video 3

Time-lapse video of a P. aeruginosa cell infected by a wild-type ФKZ packaged with gp93-mNeonGreen fusion proteins in the capsid.

Source data

Source Data Fig. 1

Unprocessed agarose gels.

Source Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed agarose gels.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Oromí-Bosch, A., Mendoza, S.D. et al. Bacteriophage genome engineering with CRISPR–Cas13a. Nat Microbiol 7, 1956–1966 (2022). https://doi.org/10.1038/s41564-022-01243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01243-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology