Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-omics analyses of airway host–microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions

Abstract

The mechanistic role of the airway microbiome in chronic obstructive pulmonary disease (COPD) remains largely unexplored. We present a landscape of airway microbe–host interactions in COPD through an in-depth profiling of the sputum metagenome, metabolome, host transcriptome and proteome from 99 patients with COPD and 36 healthy individuals in China. Multi-omics data were integrated using sequential mediation analysis, to assess in silico associations of the microbiome with two primary COPD inflammatory endotypes, neutrophilic or eosinophilic inflammation, mediated through microbial metabolic interaction with host gene expression. Hypotheses of microbiome–metabolite–host interaction were identified by leveraging microbial genetic information and established metabolite–human gene pairs. A prominent hypothesis for neutrophil-predominant COPD was altered tryptophan metabolism in airway lactobacilli associated with reduced indole-3-acetic acid (IAA), which was in turn linked to perturbed host interleukin-22 signalling and epithelial cell apoptosis pathways. In vivo and in vitro studies showed that airway microbiome-derived IAA mitigates neutrophilic inflammation, apoptosis, emphysema and lung function decline, via macrophage–epithelial cell cross-talk mediated by interleukin-22. Intranasal inoculation of two airway lactobacilli restored IAA and recapitulated its protective effects in mice. These findings provide the rationale for therapeutically targeting microbe–host interaction in COPD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Airway metagenome profiles for patients with COPD and healthy controls.
Fig. 2: Airway metabolome, host transcriptome and proteome profiles for patients with COPD and healthy controls.
Fig. 3: Overview of microbiome–metabolite–host interaction in COPD.
Fig. 4: Top links for microbiome–metabolite–host interaction in COPD.
Fig. 5: IAA ameliorates lung function decline, neutrophilic inflammation and apoptosis.
Fig. 6: IAA inhibits apoptosis through macrophage–epithelial cross-talk via IL-22.

Similar content being viewed by others

Data availability

The raw metagenomic data for the human cohort have been deposited in the European Genome-phenome Archive (EGA) under EGAS00001006398 for controlled access. The raw transcriptomic data for the human cohort have been deposited in the Chinese National Gene Bank Nucleotide Sequence Archive (CNSA, https://db.cngb.org/cnsa/) under CNP0001954 for controlled access. The raw metabolomic data for the human cohort have been deposited in EBI MetaboLights under MTBLS4017. The raw 16S rRNA gene and transcriptome data for the murine experiments have been deposited in NCBI GenBank under PRJNA852659 and PRJNA852891. The processed human multi-omic data and metadata tables have been deposited in Figshare (https://doi.org/10.6084/m9.figshare.19126655). The processed mouse omic data tables have been deposited in Figshare (https://doi.org/10.6084/m9.figshare.18738428). Reference genomes and databases used in this study include the human genome GRCh38 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/), mouse genome GRCm38 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/), KEGG (https://www.genome.jp/kegg/), HMDB (https://hmdb.ca/), METLIN (https://metlin.scripps.edu/), MetaCyc (https://metacyc.org/), and STITCH (http://stitch.embl.de/).

Code availability

The computer codes necessary for generating key results in this work have been deposited as in GitHub under https://github.com/wangzlab/COPD_multiomics.

References

  1. Chronic obstructive pulmonary disease (COPD). World Health Organization http://www.who.int/respiratory/copd/en/ (2021).

  2. Lopez, A. D. et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur. Respir. J. 27, 397–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Franklin, W., Lowell, F. C., Michelson, A. L. & Schiller, I. W. Chronic obstructive pulmonary emphysema; a disease of smokers. Ann. Intern. Med. 45, 268–274 (1956).

    Article  CAS  PubMed  Google Scholar 

  4. Garudadri, S. & Woodruff, P. G. Targeting chronic obstructive pulmonary disease phenotypes, endotypes, and biomarkers. Ann. Am. Thorac. Soc. 15, S234–S238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roca, J. et al. Chronic obstructive pulmonary disease heterogeneity: challenges for health risk assessment, stratification and management. J. Transl. Med. 12 (Suppl 2), S3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barnes, P. J. Inflammatory endotypes in COPD. Allergy 74, 1249–1256 (2019).

    PubMed  Google Scholar 

  7. Wang, Z. et al. Lung microbiome dynamics in COPD exacerbations. Eur. Respir. J. 47, 1082–1092 (2016).

    Article  PubMed  Google Scholar 

  8. Mayhew, D. et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 73, 422–430 (2018).

    Article  PubMed  Google Scholar 

  9. Wang, Z. et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am. J. Respir. Crit. Care Med. 203, 1488–1502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yadava, K. et al. Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies. Am. J. Respir. Crit. Care Med. 193, 975–987 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, D. et al. Dysregulated lung commensal bacteria drive interleukin-17b production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity 50, 692–706 e697 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Budden, K. F. et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med. 7, 907–920 (2019).

    Article  PubMed  Google Scholar 

  13. Ubags, N. D. J. & Marsland, B. J. Mechanistic insight into the function of the microbiome in lung diseases. Eur. Respir. J. 50, 1602467 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Wang, Z. et al. Multi-omic meta-analysis identifies functional signatures of airway microbiome in chronic obstructive pulmonary disease. ISME J. 14, 2748–2765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pedersen, H. K. et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 13, 2781–2800 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khare, E. & Arora, N. K. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr. Microbiol. 61, 64–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Dai, W. et al. An integrated respiratory microbial gene catalogue to better understand the microbial aetiology of Mycoplasma pneumoniae pneumonia. Gigascience 8, giz093 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dickson, R. P. & Cox, M. J. Gut microbiota and protection from pneumococcal pneumonia. Gut 66, 384 (2017).

    Article  PubMed  Google Scholar 

  21. Dickson, R. P. et al. The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am. J. Respir. Crit. Care Med. 198, 497–508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y. et al. Lipopolysaccharide downregulates macrophage-derived IL-22 to modulate alcohol-induced hepatocyte cell death. Am. J. Physiol. Cell Physiol. 313, C305–C313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hansson, M., Silverpil, E., Linden, A. & Glader, P. Interleukin-22 produced by alveolar macrophages during activation of the innate immune response. Inflamm. Res. 62, 561–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Segal, L. N. et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax 72, 13–22 (2017).

    Article  PubMed  Google Scholar 

  25. Hendrikx, T. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 68, 1504–1515 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Starkey, M. R. et al. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur. Respir. J. 54, 1800174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Sulaiman, I. et al. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. Nat. Microbiol. 6, 1245–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, B. G. et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to streptococcus pneumoniae. Am. J. Respir. Crit. Care Med. 203, 1099–1111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1, 16031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ehrlich, A. M. et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 20, 357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laursen, M. F. et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 6, 1367–1382 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, Z. H. et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp. Mol. Med. 51, 1–14 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Langan, D., Perkins, D. J., Vogel, S. N. & Moudgil, K. D. Microbiota-derived metabolites, indole-3-aldehyde and indole-3-acetic acid, differentially modulate innate cytokines and stromal remodeling processes associated with autoimmune arthritis. Int. J. Mol. Sci. 22, 2017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Wright, J. L., Cosio, M. & Churg, A. Animal models of chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L1–L15 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vlahos, R., Bozinovski, S., Gualano, R. C., Ernst, M. & Anderson, G. P. Modelling COPD in mice. Pulm. Pharmacol. Ther. 19, 12–17 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Doyle, A. D. et al. Eosinophil-derived IL-13 promotes emphysema. Eur. Respir. J. 53, 1801291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saha, S., Rajpal, D. K. & Brown, J. R. Human microbial metabolites as a source of new drugs. Drug Discov. Today 21, 692–698 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Global Strategy For the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (Global Initiative for Chronic Obstructive Lung Disease, 2019).

  42. Wang, Z. et al. A refined view of airway microbiome in chronic obstructive pulmonary disease at species and strain-levels. Front Microbiol 11, 1758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pocket Guide to COPD Diagnosis, Management and Prevention. A Guide for Health Care Professionals (Global Initiative for Chronic Obstructive Lung Disease, 2019); www.goldcopd.com

  44. Bafadhel, M. et al. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration 83, 36–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, F. et al. Reproducibility of fluid-phase measurements in PBS-treated sputum supernatant of healthy and stable COPD subjects. Int. J. Chron. Obstruct. Pulmon. Dis. 14, 835–852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murray, P. R. & Washington, J. A. Microscopic and baceriologic analysis of expectorated sputum. Mayo Clin. Proc. 50, 339–344 (1975).

    CAS  PubMed  Google Scholar 

  47. Morgan, X. C. et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol. 16, 67 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Clarke, E. L. et al. Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome 7, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marcel, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. Sourceforge https://sourceforge.net/projects/bbmap/ (2014).

  58. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP–a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Guijas, C. et al. METLIN: A technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Caspi, R. et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34, D511–D516 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Szklarczyk, D. et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380–D384 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  78. Gong, S. et al. Intestinal microbiota mediates the susceptibility to polymicrobial sepsis-induced liver injury by granisetron generation in mice. Hepatology 69, 1751–1767 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Martinez-Lopez, M. et al. Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 50, 446–461 e449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delroisse, J. M. et al. Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol. Res. 163, 663–670 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Lai, H. C. et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut 71, 309–321 (2021).

    Article  PubMed  CAS  Google Scholar 

  82. He, Z. H. et al. Comparison between cigarette smoke-induced emphysema and cigarette smoke extract-induced emphysema. Tob. Induc. Dis. 13, 6 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Guan, R. et al. Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1alpha/MAPK signaling pathway. Int. Immunopharmacol. 81, 105979 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Ji, Y., Gao, Y., Chen, H., Yin, Y. & Zhang, W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients 11, 2062 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  85. Liang, X. et al. Limax extract ameliorates cigarette smoke-induced chronic obstructive pulmonary disease in mice. Int. Immunopharmacol. 54, 210–220 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Koksel, O. et al. Effects of N-acetylcysteine on oxidant–antioxidant balance in oleic acid-induced lung injury. Exp. Lung Res. 30, 431–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Herbst, T. et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184, 198–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Yu, Y. R. et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am. J. Respir. Cell Mol. Biol. 54, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bharat, A. et al. Flow cytometry reveals similarities between lung macrophages in humans and mice. Am. J. Respir. Cell Mol. Biol. 54, 147–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin, E. L., Sheikh, T. A., Leco, K. J., Lewis, J. F. & Veldhuizen, R. A. Contribution of alveolar macrophages to the response of the TIMP-3 null lung during a septic insult. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L779–L789 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Krupnick, A. S. et al. Central memory CD8+ T lymphocytes mediate lung allograft acceptance. J. Clin. Invest. 124, 1130–1143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seo, G. Y. et al. LIGHT-HVEM signaling in innate lymphoid cell subsets protects against enteric bacterial infection. Cell Host Microbe 24, 249–260 e244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hervieu, A. et al. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J. Invest. Dermatol. 133, 499–508 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Bolyen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 6, e27295v2 (2018).

    Google Scholar 

  95. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peters, M. C. et al. A transcriptomic method to determine airway immune dysfunction in T2-high and T2-low asthma. Am. J. Respir. Crit. Care Med. 199, 465–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gorshkova, I. et al. Protein kinase C-epsilon regulates sphingosine 1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein kinase C-zeta, and Rac1. J. Biol. Chem. 283, 11794–11806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Programme of China (2017YFC1310600) to R.C., the National Natural Science Foundation of China (31970112, 32170109) to Z.W., the Science and Technology Foundation of Guangdong Province (2019A1515011395) to Z.W., the Shenzhen Science Technology and Innovative Commission (SZSTI) (KCXFZ202002011008256) to L.W. and the Medical Scientific Research Foundation of Guangdong Province (C2019001) to R.C.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. conceived the study design. Y.Y., H.L., Z.L., F.W., D.C., L.W. and W. Shi contributed to clinical sample and data collection. X.Y., W.M., J.G., J.Y. and Z.W. performed statistical and bioinformatic analyses. Z.Y., B.C., M.W., X.L. and W.L. performed in vivo and in vitro experiments. G.E.-M., M.M.B., P.L., S.G., X.C., W. Shu, M.R.S., E.M.E.-O., J.A.G., M.J.B., H.Z. and R.C. assisted in data analyses and interpretation. H.Z., R.C. and Z.W. co-supervised the study. Z.W. drafted the manuscript. All authors provided critical revisions and approved the final manuscript.

Corresponding authors

Correspondence to Hongwei Zhou, Rongchang Chen or Zhang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Michael Weiden, Katrine Whiteson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The overall workflow integrating human multi-omics, in vivo murine model experiments and in vitro cellular assays to elucidate airway microbe-host interactions in COPD.

a) Induced sputum was collected from COPD patients and healthy controls from Guangzhou (discovery cohort) and Shenzhen (validation cohort), China. Demographic and clinical metadata including age, gender, smoking history, medication history, spirometry, sputum and blood differential cell counts were obtained. b) Induced sputum was subject to simultaneous characterization of metagenome (n = 135), metabolome (n = 129), host transcriptome (n = 130) and proteome (n = 59). The multi-omic profiles were processed by a combination of knowledge-driven and data-driven dimensionality reduction to generate KEGG and co-abundance modules, which were then filtered by COPD-association testing. To identify microbial-metabolite-host interaction links, a sequential mediation analysis was performed along the metagenome-metabolome-transcriptome-proteome axis for modules associated with neutrophilic or eosinophilic inflammation, respectively. Cross-omic biological links were then identified from pairs of modules with significant mediation effects, utilizing microbial genetic information, metabolite-target pairs and canonical pathways from existing databases. c) The selected microbiome-metabolite-host interaction hypothesis was tested using a murine model of emphysema and in vitro cell assays to elucidate molecular and cellular mechanisms. Lung function, airway inflammation, tissue destruction, and apoptosis were measured as key endpoints in the in vivo and in vitro experiments.

Extended Data Fig. 2 Taxonomic and functional profiles of the airway microbiome in COPD and controls.

a) The total bacterial load for the 106 samples with available genomic DNA specimens, based on 16S rRNA gene qPCR assays (n = 106). Each sample was run in duplicate. The Ct value cannot be determined (ND) for the four reagent controls. The central line indicates the median. The lower and upper hinges indicate the first and third quartiles. The lower and upper whiskers extend from the hinge to the smallest and largest values no further than 1.5 * inter-quartile range from the hinge. Significance was determined using two-sided Wilcoxon rank-sum test. b) The fold-changes of differential species-level taxa in COPD and controls using reads-based taxonomy are correlated with those using bin-based taxonomy. Significance was determined using two-sided Wilcoxon rank-sum test, adjusting for multiple comparisons. c) Association of differential species-level taxa and KEGG metagenome modules with sputum neutrophil and eosinophil percentages. The X-axis and Y-axis denote minus log10 (FDR P-value) times directionality of correlation for neutrophil and eosinophil, respectively. The full ordination space is divided into colored area for associations with neutrophil only, eosinophil only, neutrophil and eosinophil, and neither (FDR < 0.1).

Extended Data Fig. 3 Metabolome and host multi-omic profiles in COPD and controls.

Association of differential a) metabolome modules, b) host transcriptome modules, c) sputum proteome features and d) serum proteome features with sputum neutrophil and eosinophil percentages. Significance was determined using two-sided Wilcoxon rank-sum test, adjusting for multiple comparisons. The X-axis and Y-axis denote minus log10 (FDR P-value) times directionality of correlation for neutrophil and eosinophil, respectively. The full ordination space is divided into colored area for associations with neutrophil only, eosinophil only, neutrophil and eosinophil, and neither (FDR < 0.1).

Extended Data Fig. 4 Sequential mediation analysis for multi-omic data integration.

a) The number of paired MetaG-MetaB, MetaB-HostT, HostT-HostP (sputum protein: Spuprot, serum protein: Serprot) modules with or without significant mediation effect for neutrophil and eosinophil inflammation, respectively. b) The proportion of mediation effect is indicated for paired MetaG-MetaB (NEU = 1838, EOS = 248, PNEUvsEOS<2.2e-16), MetaB-HostT (NEU = 2806, EOS = 320, PNEUvsEOS <2.2e-16), HostT-HostP (sputum protein: Spuprot, NEU = 1530, EOS = 455, PNEUvsEOS<2.2e-16, serum protein: Serprot, NEU = 305, EOS = 105, PNEUvsEOS=2.0e-7) modules for neutrophil and eosinophil inflammation, respectively. Significance was determined using two-sided Wilcoxon rank-sum test. c) The comparison between the mediation effects in the forward (that is MetaG-MetaB-NEU) and reverse (that is MetaG-NEU-MetaB) mediation analyses (MetaG-MetaB-NEU = 66, MetaB-HostT-NEU = 136, MetaG-MetaB-EOS = 17, MetaB-HostT-EOS = 38). Significance was determined using paired sample, two-sided Wilcoxon rank-sum test. The central line indicates the median. The lower and upper hinges indicate the first and third quartiles. The lower and upper whiskers extend from the hinge to the smallest and largest values no further than 1.5 * inter-quartile range from the hinge. d) Schematic illustration of sequential mediation analysis for MetaG, MetaB, HostT modules and HostP features in association with neutrophilic or eosinophilic COPD. The top three and top one MetaG-MetaB-HostT links are shown for neutrophilic or eosinophilic COPD, respectively. Each node represents an omic module/feature or host phenotype. The Spearman correlation’s rho is indicated between the nodes. The directionality of mediation analysis is indicated in red arrows. Blue arrows indicate that the linked metabolites in the MetaB modules are the products of the MetaG modules. The proportion of mediation effect is indicated in red. e) The top metagenomic species (MGS)-derived microbial species contributing to the four MetaG modules (P00380, M00044, P00250, and P00564) and their KOs, as identified in leave-one-species-out analysis. The full bacterial species names for the acronyms are: Aap: Aggregatibacter aphrophilus; Aba: Acinetobacter baumannii; Cgi: Capnocytophaga gingivalis; Eco: Escherichia coli; Hinf: Haemophilus influenzae; Lbg: Lachnospiraceae bacterium GAM79; Lbo: Lachnospiraceae bacterium oral taxon 500; Lsa: Lactobacillus salivarius; Mca: Moraxella catarrhalis; Mdi: Mogibacterium diversum; Nme: Nesseria meningtidis; Nmu: Neisseria mucosa; Nsu: Neisseria subflava; Pae: Pseudomonas aeruginosa; Pgi: Porphyromonas gingivalis; Pje: Prevotella jejuni; Pin: Prevotella intermedia; Pme: Prevotella melaninogenica; Pmi: Parvimonas micra; Rmu: Rothia mucilaginosa; Ppu: Pseudomonas putita; Rma: Ralstonia mannitolylitica; Rsh: Ruania sp. HY168; Sac: Saccharibacteria; Smi: Streptococcus mitis; Spn: Streptococcus pneumoniae; Ssa: Streptococcus salivarius; Vat: Veillonella atypica.

Extended Data Fig. 5 Antibiotic depletion of lung or gut microbiota in mice.

a) Barplot shows reduced bacterial load in mouse lung but not cecum when the antibiotics were intranasally administered (n = 5). b) Intranasal delivery of antibiotics resulted in significantly decreased load of Lactobacillus in the lung but not cecum in mice (n = 5). c) Intranasal delivery of antibiotics did not significantly alter the level of indole-3-acetic acid (IAA) in mouse serum (n = 5). d) Intragastrical and/or drinking water delivery of antibiotics resulted in significantly decreased total bacterial load in cecum but not lung in mice (n = 5). e) Intragastrical and/or drinking water delivery of antibiotics resulted in significantly decreased Lactobacillus load in cecum but not lung in mice (n = 5). f) Intragastrical and/or drinking water delivery of antibiotics did not significantly alter the level of IAA in mouse BALF (n = 5). Barplots are presented as mean ± SD. Significance was determined using two-sided Student’s t-test. Exact P-values are provided in Source Data. *** P < 0.001, ** P < 0.01, * P < 0.05, + P < 0.1.

Extended Data Fig. 6 Airway microbiome-derived indole-3-acetic acid (IAA) ameliorated lung function decline, neutrophilic inflammation and apoptosis.

a) Barplot shows non-significantly increased forced vital capacity (FVC) by IAA in emphysema murine model (n = 5). b) Barplots shows decreased airway TNF-α, IL-1β, IL-6 and IL-17A levels by IAA in the emphysema murine model (n = 5). c) Barplot shows reduced IAA levels in the emphysema murine model (n = 5). d) Barplots show decreased emphysema, as measured by mean linear intercept and destruction index by IAA in the emphysema murine model (n = 5). e) Barplots for area of collagen deposition (μm2) per basement membrane perimeter (μm) and representative images of collagen deposition show decreased collagen deposition by IAA in the emphysema murine model (n = 5). f) Barplot shows increased CCND1 (Cyclin D1) mRNA level by IAA in the emphysema murine model (n = 5). g) Barplot shows increased macrophage over neutrophil percentage in BALF by IAA in the emphysema murine model (n = 5). h) Barplot shows decreased neutrophilic elastase by IAA in the emphysema murine model. Barplots are presented as mean ± SD. Significance was determined using two-sided Student’s t-test. Exact P-values are provided in Source Data. *** P < 0.001, ** P < 0.01, * P < 0.05, + P < 0.1.

Extended Data Fig. 7 The roles of indole-3-acetic acid (IAA) were mediated through AhR and IL-22.

a) Barplot shows a non-significantly reversed trend of lung function in response to IAA when AhR was inhibited (n = 5). b–e) lung histopathological score and representative H and E stained lung sections (b, n = 5, arrows indicate inflammatory infiltrates), TUNEL assay for apoptosis (c, n = 5), immuno-fluorescence (d, n = 5) and western blots (d, n = 3) for cleaved caspase-3, expression of TNF-α, IL-1β, IL-6, and IL-17A (e, n = 5) in the lung of emphysema mice treated with or without IAA, and with or without anti-IL-22 neutralizing antibody. f) Flow cytometry shows increased numbers of IL-22+ interstitial macrophages (F4/80 + CD11c + CD11b + IL-22 + ) by IAA in the emphysema murine model (n = 5). Barplots are presented as mean ± SD. Significance was determined using two-sided Student’s t-test. Exact P-values are provided in Source Data. *** P < 0.001, ** P < 0.01, * P < 0.05, + P < 0.1.

Extended Data Fig. 8 Depletion of lung macrophages abrogated the anti-inflammatory and anti-apoptotic effects of indole-3-acetic acid (IAA).

a-b) Flow cytometry shows successful depletion of lung macrophages by intratracheal instillation of dichloromethylene-diphosphonate liposomes (n = 5). c) Depletion of lung macrophages abolished IAA’s protective effects on lung function decline (n = 5). d) Barplot of lung histopathological score and representative H and E stained lung sections show abolished effects of IAA on lung injury upon depletion of lung macrophages (n = 5). e) TUNEL assays and representative fluorescence images show abolished effects of IAA on tissue apoptosis upon depletion of lung macrophages (n = 5). TUNEL-positive cells are indicated in white arrows. Barplots are presented as mean ± SD. Significance was determined using two-sided Student’s t-test. Exact P-values are provided in Source Data. *** P < 0.001, ** P < 0.01, * P < 0.05, + P < 0.1.

Extended Data Fig. 9 The phenotypic effects of indole-3-acetic acid (IAA) were validated in a cigarette smoke (CS)-induced COPD murine model.

a) Barplot shows ameliorated lung function decline by IAA in CS-induced COPD murine model (n = 5). b) Barplot of lung histopathological score and representative H and E stained lung sections show reduced tissue injury by IAA in CS-induced COPD murine model (n = 5). c) Barplots show decreased emphysema, as measured by mean linear intercept and destruction index by IAA in CS-induced COPD murine model (n = 5). d) Barplots show decreased TNF-α, IL-1β, IL-6 and IL-17A levels by IAA in CS-induced COPD murine model (n = 5). e) TUNEL assay and representative fluorescence images show decreased apoptotic rates by IAA in CS-induced COPD murine model (n = 5). TUNEL-positive cells are indicated in white arrows. Barplots are presented as mean ± SD. Significance was determined using two-sided Student’s t-test. Exact P-values are provided in Source Data. *** P < 0.001, ** P < 0.01, * P < 0.05, + P < 0.1.

Extended Data Fig. 10 Intranasal inoculation of Lactobacillus salivarius and Lactobacillus oris restored indole-3-acetic acid (IAA) and recapitulated its effects.

a) Barplot shows mitigated lung functional decline when inoculating L. oris (LO), L. salivarius (LS), and L. oris+L. salivarius (LO + LS) (n = 5). b) Barplot of lung histopathological score and representative H and E stained lung sections show significantly alleviated tissue injury when inoculating LO, LS and LO + LS (n = 5). Arrows indicate inflammatory infiltrates. c) TUNEL assays and representative fluorescence images show decreased apoptotic rates when inoculating LO, LS and LO + LS (n = 5). TUNEL-positive cells are indicated in white arrows. d) Barplots show reduced levels of TNF-α, IL-1β, IL-6 and IL-17A when inoculating LO, LS and LO + LS (n = 5). Barplots are presented as mean ± SD. Significance was determined using two-sided Student’s t-test. Exact P-values are provided in Source Data. *** P < 0.001, ** P < 0.01, * P < 0.05, + P < 0.1.

Supplementary information

Supplementary Information

Supplementary results and Figs. 1–21.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–13.

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 5

Unprocessed Western Blots

Source Data Fig. 6

Statistical source data

Source Data Fig. 6

Unprocessed Western Blots

Source Data Extended Data Fig. 2

Statistical source data

Source Data Extended Data Fig. 3

Statistical source data

Source Data Extended Data Fig. 4

Statistical source data

Source Data Extended Data Fig. 5

Statistical source data

Source Data Extended Data Fig. 6

Statistical source data

Source Data Extended Data Fig. 7

Statistical source data

Source Data Extended Data Fig. 7

Unprocessed Western Blots

Source Data Extended Data Fig. 8

Statistical source data

Source Data Extended Data Fig. 9

Statistical source data

Source Data Extended Data Fig. 10

Statistical source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Chen, B., Yang, Y. et al. Multi-omics analyses of airway host–microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 7, 1361–1375 (2022). https://doi.org/10.1038/s41564-022-01196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01196-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing