Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease

Abstract

Secretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence. Candida albicans was a potent inducer of IgA class-switch recombination among plasma cells, via an interaction dependent on intestinal phagocytes and hyphal programming. Characterization of sIgA affinity and polyreactivity showed that hyphae-associated virulence factors were bound by these antibodies and that sIgA influenced C. albicans morphotypes in the murine gut. Furthermore, an increase in granular hyphal morphologies in patients with Crohn’s disease compared with healthy controls correlated with a decrease in antifungal sIgA antibody titre with affinity to two hyphae-associated virulence factors. Thus, in addition to its importance in gut bacterial regulation, sIgA targets the uniquely fungal phenomenon of hyphal formation. Our findings indicate that antifungal sIgA produced in the gut can play a role in regulating intestinal fungal commensalism by coating fungal morphotypes linked to virulence, thereby providing a protective mechanism that might be dysregulated in patients with Crohn’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Under homoeostatic conditions, the majority of the mouse and human gut mycobiota is coated by sIgA primarily induced by C. albicans.
Fig. 2: sIgA antibodies preferentially bind fungal hyphae and influence C. albicans morphotypes in the gut.
Fig. 3: C. albicans hyphal morphotypes induce potent sIgA responses.
Fig. 4: C. albicans sIgA responses are mediated through interaction with DC2 and CX3CR1+ MNPs.
Fig. 5: C. albicans-induced sIgA that targets hyphae-associated virulence factors is decreased in patients with CD.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding author on request.

References

  1. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host–microbiota mutualism. Science 325, 617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 13, 12–21 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Spencer, J. & Sollid, L. M. The human intestinal B-cell response. Mucosal Immunol. 9, 1113–1124 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Bunker, J. J. & Bendelac, A. IgA responses to microbiota. Immunity 49, 211–224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uchimura, Y. et al. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49, 545–559.e545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Macpherson, A. J. et al. IgA production without mu or delta chain expression in developing B cells. Nat. Immunol. 2, 625–631 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Gopalakrishna, K. P. et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 25, 1110–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nowosad, C. R. et al. Tunable dynamics of B cell selection in gut germinal centres. Nature 588, 321–326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, H. et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nature 582, 421–425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9, eaaf9655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J. Crohn’s Colitis 10, 296–305 (2015).

    Article  Google Scholar 

  20. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leonardi, I. et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27, 823–829.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Leonardi, I. et al. CX3CR1(+) mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, A. M. et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 127, 2829–2841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Israeli, E. et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 54, 1232–1236 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Standaert-Vitse, A. et al. Candida albicans colonization and ASCA in familial Crohn’s disease. Am. J. Gastroenterol. 104, 1745–1753 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031.e1014 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Millet, N., Solis, N. V. & Swidergall, M. Mucosal IgA prevents commensal Candida albicans dysbiosis in the oral cavity. Front. Immunol. 11, 555363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Witchley, J. N. et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe 25, 432–443.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang, S.-H. et al. Hemizygosity enables a mutational transition governing fungal virulence and commensalism. Cell Host Microbe 25, 418–431.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gow, N. A. R. & Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 15, 406–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Doron, I., Leonardi, I. & Iliev, I. D. Profound mycobiome differences between segregated mouse colonies do not influence Th17 responses to a newly introduced gut fungal commensal. Fungal Genet. Biol. 127, 45–49 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koch, M. A. et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, K., McCoy, K. D. & Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Senda, S., Cheng, E. & Kawanishi, H. Aging-associated changes in murine intestinal immunoglobulin A and M secretions. Scand. J. Immunol. 27, 157–164 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Lécuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    Article  PubMed  Google Scholar 

  40. Fan, D. et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21, 808–814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhai, B. et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat. Med. 26, 59–64 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, X. et al. Response to fungal dysbiosis by gut-resident CX3CR1(+) mononuclear phagocytes aggravates allergic airway disease. Cell Host Microbe 24, 847–856.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaedler, R. W., Dubs, R. & Costello, R. Association of germfree mice with bacteria isolated from normal mice. J. Exp. Med. 122, 77–82 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Pande, K., Chen, C. & Noble, S. M. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat. Genet. 45, 1088–1091 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pierce, J. V., Dignard, D., Whiteway, M. & Kumamoto, C. A. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot. Cell 12, 37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pierce, J. V. & Kumamoto, C. A. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio 3, e00117–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allert, S. et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio 9, e00915–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lo, H. J. et al. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Hube, B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr. Opin. Microbiol. 7, 336–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Koscsó, B. et al. Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci. Immunol. 5, eaax0062 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Farache, J., Zigmond, E., Shakhar, G. & Jung, S. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol. Cell Biol. 91, 232–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Bogunovic, M., Mortha, A., Muller, P. A. & Merad, M. Mononuclear phagocyte diversity in the intestine. Immunol. Res 54, 37–49 (2012).

    Article  PubMed  Google Scholar 

  55. Chikina, A. S. et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell 183, 411–428.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Joeris, T., Müller-Luda, K., Agace, W. W. & Mowat, A. M. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol. 10, 845–864 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, K., Magri, G., Grasset, E. K. & Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20, 427–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Ha, S. A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203, 2541–2550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Netea, M. G., Joosten, L. A. B., van der Meer, J. W. M., Kullberg, B.-J. & van de Veerdonk, F. L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Li, X. V., Leonardi, I. & Iliev, I. D. Gut mycobiota in immunity and inflammatory disease. Immunity 50, 1365–1379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y. & Filler, S. G. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot. Cell 10, 168–173 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Shimoda, M., Inoue, Y., Azuma, N. & Kanno, C. Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer’s patches. Immunology 97, 9–17 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brand, A. Hyphal growth in human fungal pathogens and its role in virulence. Int. J. Microbiol. 2012, 517529 (2012).

    Article  PubMed  Google Scholar 

  70. Wu, G. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 11, e1005614 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Saadatzadeh, M. R., Ashbee, H. R., Holland, K. T. & Ingham, E. Production of the mycelial phase of Malassezia in vitro. Med. Mycol. 39, 487–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Loures, F. V. et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog. 11, e1004643 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Moyes, D. L. et al. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS ONE 6, e26580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zuza-Alves, D. L., Silva-Rocha, W. P. & Chaves, G. M. An update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol. 8, 1927–1927 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gantner, B. N., Simmons, R. M. & Underhill, D. M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin, X., Alspaugh, J. A., Liu, H. & Harris, S. Fungal morphogenesis. Cold Spring Harb. Perspect. Med. 5, a019679 (2014).

    Article  PubMed  Google Scholar 

  77. McKenzie, C. G. et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect. Immun. 78, 1650–1658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Staab, J. F. & Sundstrom, P. Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14, 681–686 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Fonzi, W. A. & Irwin, M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prieto, D., Román, E., Correia, I. & Pla, J. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans. PLoS ONE 9, e87128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Park, Y. N. & Morschhäuser, J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot. Cell 4, 1328–1342 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Noble, S. M. & Johnson, A. D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot. Cell 4, 298–309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Granger, B. L., Flenniken, M. L., Davis, D. A., Mitchell, A. P. & Cutler, J. E. Yeast wall protein 1 of Candida albicans. Microbiology (Reading) 151, 1631–1644 (2005).

    Article  CAS  Google Scholar 

  85. Román, E., Coman, I., Prieto, D., Alonso-Monge, R. & Pla, J. Implementation of a CRISPR-based system for gene regulation in Candida albicans. mSphere 4, e00001–e00019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chauvel, M. et al. A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PLoS ONE 7, e45912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pla, J., Pérez-Díaz, R. M., Navarro-García, F., Sánchez, M. & Nombela, C. Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165, 115–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Xie, J. et al. White–opaque switching in natural MTLa/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex. PLoS Biol. 11, e1001525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Iliev laboratory for their critical reviews of the manuscript. We thank Ramnik Xavier for discussion and analysis that helped us with shaping the hypothesis. We thank all contributing members of the JRI IBD Live Cell Bank Consortium, and the Microbiome Core Laboratory of Weill Cornell Medicine. Support for human sample acquisition through the JRI IBD Live Cell Bank is provided by the Jill Roberts Institute, Jill Roberts Center for IBD, Cure for IBD, the Rosanne H. Silbermann Foundation and Weill Cornell Medicine Division of Pediatric Gastroenterology and Nutrition. J.P. and E.R. were funded by PGC2018-095047-B-I00 from MINECO and InGEMICS (B2017/BMD-3691) from CAM. Research in the Iliev laboratory is supported by US National Institutes of Health (R01AI163007, R01DK113136 and R01DK121977), the Leona M. and Harry B. Helmsley Charitable Trust, the Irma T. Hirschl Career Scientist Award, Crohn’s and Colitis Foundation, Pilot Project Funding from the Center for Advanced Digestive Care (CADC) and the Burrough Welcome Trust PATH Award.

Author information

Authors and Affiliations

Authors

Contributions

I.D. and I.D.I. conceived and designed the experiments. I.D., M.M., D.G.S., X.V.L., I.L., T.K., W.D.F., W.-Y.L., E.R. and M.B.-D. performed the experiments. J.P., R.S.L. and P.C.W., generated key research materials and contributed to interpretation of the experiments. I.D. and I.D.I. generated figures and legends from analysed data. I.D.I acquired funding for the project. I.D. and I.D.I. wrote the manuscript.

Corresponding author

Correspondence to Iliyan D. Iliev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks Kathy McCoy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Identification of gut fungi from fecal material by flow cytometry and anti-C. albicans sIgA dynamics.

a, Microbes in fecal material from SPF WT WCM-CE mice were distinguished as a Sybrhi population that is absent in GF mouse feces. b, Fungi (SybrhiCFW+) were enriched from bacteria (SybrhiCFW) through size separation by 900g centrifugation and calcofluor white (CFW) staining of the resulting pellet. c, C. albicans cultured for 18 hours in hyphae-inductive media was stained with fecal supernatant from C. albicans-colonized GF mice (N = 6) collected at 0, 2-, 4, 8- and 14-days post colonization, followed by sIgA staining. Analysis of IgA binding representative of two independent experiments, one-way ANOVA, followed by Sidak’s test. d, Representative flow cytometry plots of frequency of B220+IgA+ among Live CD45+CD4 cells in the PP of germ-free (GF) mice orally gavaged with PBS (GF) or colonized for two weeks with C. albicans (+Ca). Data in (c) represents mean ± SEM.

Source data

Extended Data Fig. 2 CFW+Sybrhi FSChiSSChi C. albicans population in feces represents hyphal/ pseudohyphal fungal morphologies that are preferentially bound by sIgA.

a, CFW+Sybrhi fungal population from feces of SPF mice colonized with CAF2-RFP C. albicans was sorted into FSChiSSChi and FSCl°SSClo fractions. Constitutive expression of RFP in this strain allows for high visibility and resistance to signal quenching upon prolonged light exposure during flow cytometry and microscopy on the same material. b, Immunofluorescence microscopy of sorted material from (a). Composite images at 20X magnification of FSChiSSChi and FSCloSSClo shown in left and right panels, respectively. Scale bar represents 25μm. Data representative of two independent experiments. c, CFW+Sybrhi fungal population from feces of SPF mice colonized with CAF2-RFP was sorted into IgA+ and IgA populations. Gray histograms represent IgAisotype control staining used to distinguish sorted populations. d-e, Area (d) and perimeter length (e) of CAF2-RFP were compared between IgA+ and IgA sorted populations. Data represents two independent experiments, mean ± SEM. Two-sided Mann-Whitney test. N = 5.

Source data

Extended Data Fig. 3 Assessment of Ca-dREP C. albicans double reporter strain upon IgA staining and hyphae forming deficiency of efg1Δ/Δ cph1Δ/Δ C. albicans strain.

a-b, Immunofluorescence microscopy of Ca-dREP incubated with human fecal supernatant as a source of sIgA and stained with DAPI and anti-human IgAAPC (a) or an APC isotype control (b). Single channel staining of 2 samples shown. Left to right: DAPI, constitutive ENO1-GFP expression, hyphae-specific HWP1-RFP expression, and anti-human IgAAPC (a) or APC isotype control (b). Top rows in a and b correspond to composite images in Fig. 2d,e, representing three independent experiments. Scale bar represents 50μm. c, Hyphae-competent (WT), but not hyphae-deficient (yeast-locked; efg1Δ/Δ cph1Δ/Δ) strains of C. albicans forms hyphae upon hyphae-inducing stimuli in vitro. Scale bar represents 25μm.

Extended Data Fig. 4 Flow cytometry gating strategy in PPs, LP and in feces.

a-b, Cell gating startegy for assessment of IgA+ GC B cell in PPs (a) and IgA+ plasmablasts in lamina propria (b). c, gating strategy of C.albicans cells in feces pre- and post- C.albicans (C.a) colonization.

Extended Data Fig. 5 Graphical abstract for the model of antifungal IgA induction by and regulation of intestinal fungal commensalism.

(Credit: Created with BioRender.com).

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2. Supplementary Table 1. Reagent sources. Supplementary Table 2. Mucosal washings and serum metadata.

Reporting Summary

Source data

Source Data Fig. 1

Flow cytometry and ELISA data.

Source Data Fig. 2

Flow cytometry, microscopy and microbial counts data.

Source Data Fig. 3

Flow cytometry, microbial counts and ELISA data.

Source Data Fig. 4

Flow cytometry data.

Source Data Fig. 5

Flow cytometry and ELISA data.

Source Data Extended Data Fig. 1

Flow cytometry data.

Source Data Extended Data Fig. 2

Flow cytometry and microscopy data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doron, I., Mesko, M., Li, X.V. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol 6, 1493–1504 (2021). https://doi.org/10.1038/s41564-021-00983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00983-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing