Defining and combating antibiotic resistance from One Health and Global Health perspectives

Article metrics

Abstract

Several interconnected human, animal and environmental habitats can contribute to the emergence, evolution and spread of antibiotic resistance, and the health of these contiguous habitats (the focus of the One Health approach) may represent a risk to human health. Additionally, the expansion of resistant clones and antibiotic resistance determinants among human-associated, animal-associated and environmental microbiomes have the potential to alter bacterial population genetics at local and global levels, thereby modifying the structure, and eventually the productivity, of microbiomes where antibiotic-resistant bacteria can expand. Conversely, any change in these habitats (including pollution by antibiotics or by antibiotic-resistant organisms) may influence the structures of their associated bacterial populations, which might affect the spread of antibiotic resistance to, and among, the above-mentioned microbiomes. Besides local transmission among connected habitats—the focus of studies under the One Health concept—the transmission of resistant microorganisms might occur on a broader (even worldwide) scale, requiring coordinated Global Health actions. This Review provides updated information on the elements involved in the evolution and spread of antibiotic resistance at local and global levels, and proposes studies to be performed and strategies to be followed that may help reduce the burden of antibiotic resistance as well as its impact on human and planetary health.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The One Health and global Health axes of antibiotic resistance.
Fig. 2: The hierarchy and spread of antibiotic resistance.

References

  1. 1.

    Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).

  2. 2.

    Koplan, J. P. et al. Towards a common definition of global health. Lancet 373, 1993–1995 (2009).

  3. 3.

    Wernli, D. et al. Mapping global policy discourse on antimicrobial resistance. BMJ Glob. Health 2, e000378 (2017).

  4. 4.

    Global Action Plan on Antimicrobial Resistance (WHO, 2015).

  5. 5.

    Tackling antimicrobial resistance 2019 to 2024: the UK’s 5-year national action plan (UK Government, 2019).

  6. 6.

    Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health 2, e398–e405 (2018).

  7. 7.

    Antibiotic Resistance. WHO https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (2018).

  8. 8.

    Donker, T., Wallinga, J., Slack, R. & Grundmann, H. Hospital networks and the dispersal of hospital-acquired pathogens by patient transfer. PloS ONE 7, e35002 (2012).

  9. 9.

    Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

  10. 10.

    Lanza, V. F. et al. In-depth resistome analysis by targeted metagenomics. Microbiome 6, 11 (2018).

  11. 11.

    Pärnänen, K. M. M. et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 5, eaau9124 (2019).

  12. 12.

    Martinez, J. L. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front. Microbiol. 3, 265 (2012).

  13. 13.

    Campos, M. et al. Simulating multilevel dynamics of antimicrobial resistance in a membrane computing model. mBio 10, e02460–18 (2019).

  14. 14.

    Chatterjee, A. et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect. Dis. 18, e368–e378 (2018).

  15. 15.

    Martinez, J. L. & Baquero, F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala J. Med. Sci. 119, 68–77 (2014).

  16. 16.

    Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

  17. 17.

    Potron, A., Poirel, L. & Nordmann, P. Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in Shewanella xiamenensis. Antimicrob. Agents Ch. 55, 4405–4407 (2011).

  18. 18.

    Poirel, L., Rodriguez-Martinez, J. M., Mammeri, H., Liard, A. & Nordmann, P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Ch. 49, 3523–3525 (2005).

  19. 19.

    Caudell, M. A. et al. Identification of risk factors associated with carriage of resistant Escherichia coli in three culturally diverse ethnic groups in Tanzania: a biological and socioeconomic analysis. Lancet Planet. Health 2, e489–e497 (2018).

  20. 20.

    Baquero, F. Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture. FEMS Microbiol. Rev. 41, 816–827 (2017).

  21. 21.

    Price, L. B., Hungate, B. A., Koch, B. J., Davis, G. S. & Liu, C. M. Colonizing opportunistic pathogens (COPs): the beasts in all of us. PLoS Pathog. 13, e1006369 (2017).

  22. 22.

    Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).

  23. 23.

    Muloi, D. et al. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog. Dis. 15, 467–474 (2018).

  24. 24.

    Wu, S. et al. Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity. Front. Microbiol. 9, 2767 (2018).

  25. 25.

    Liu, C. M. et al. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 9, e00470–18 (2018).

  26. 26.

    Spoor, L. E. et al. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 4, e00356–13 (2013).

  27. 27.

    Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305–11 (2012).

  28. 28.

    Uhlemann, A. C. et al. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. mBio 3, e00027–12 (2012).

  29. 29.

    Leekitcharoenphon, P. et al. Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microb. 82, 2516–2526 (2016).

  30. 30.

    Mather, A. E. et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341, 1514–1517 (2013).

  31. 31.

    Hu, Y. et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl. Environ. Microb. 82, 6672–6681 (2016).

  32. 32.

    de Been, M. et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 10, e1004776 (2014).

  33. 33.

    Matamoros, S. et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 7, 15364 (2017).

  34. 34.

    Klemm, E. J. et al. Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. mBio 9, e00105–18 (2018).

  35. 35.

    Freitas, A. R. et al. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J. Antimicrob. Chemoth. 71, 3351–3366 (2016).

  36. 36.

    Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).

  37. 37.

    Fitzpatrick, D. & Walsh, F. Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol. Ecol. 92, fiv168 (2016).

  38. 38.

    Loncaric, I. et al. Comparison of ESBL–and AmpC producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA) isolated from migratory and resident population of rooks (Corvus frugilegus) in Austria. PloS ONE 8, e84048 (2013).

  39. 39.

    Segawa, T. et al. Distribution of antibiotic resistance genes in glacier environments. Environ. Microbiol. Rep. 5, 127–134 (2013).

  40. 40.

    McDougall, F., Boardman, W., Gillings, M. & Power, M. Bats as reservoirs of antibiotic resistance determinants: A survey of class 1 integrons in grey-headed flying foxes (Pteropus poliocephalus). Infect. Genet. Evol. 70, 107–113 (2019).

  41. 41.

    Clemente, J. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

  42. 42.

    Knapp, C. W., Dolfing, J., Ehlert, P. A. & Graham, D. W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).

  43. 43.

    Enright, M. C. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl Acad. Sci. USA 99, 7687–7692 (2002).

  44. 44.

    Chen, M. Y. et al. Multilevel selection of bcrABDR-mediated bacitracin resistance in Enterococcus faecalis from chicken farms. Sci. Rep. 6, 34895 (2016).

  45. 45.

    Fondi, M. et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 8, 1388–1400 (2016).

  46. 46.

    Ingle, D. J., Levine, M. M., Kotloff, K. L., Holt, K. E. & Robins-Browne, R. M. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat. Microbiol. 3, 1063–1073 (2018).

  47. 47.

    Martinez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116–123 (2015).

  48. 48.

    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

  49. 49.

    Sommer, M. O., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).

  50. 50.

    Ruppé, E. et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat. Microbiol. 4, 112–123 (2019).

  51. 51.

    Gray, G. C. & Merchant, J. A. Pigs, pathogens, and public health. Lancet Infect. Dis. 18, 372–373 (2018).

  52. 52.

    Ramankutty, N. et al. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).

  53. 53.

    Okeke, I. N. & Edelman, R. Dissemination of antibiotic-resistant bacteria across geographic borders. Clin. Infect. Dis. 33, 364–369 (2001).

  54. 54.

    Sieber, R. N. et al. Drivers and dynamics of methicillin-resistant livestock-associated Staphylococcus aureus CC398 in pigs and humans in Denmark. mBio 9, e02142–18 (2018).

  55. 55.

    Reuland, E. A. et al. Travel to Asia and traveller’s diarrhoea with antibiotic treatment are independent risk factors for acquiring ciprofloxacin-resistant and extended spectrum beta-lactamase-producing Enterobacteriaceae-a prospective cohort study. Clin. Microbiol. Infect. 22, 731.e1–731.e7 (2016).

  56. 56.

    Murray, B. E., Mathewson, J. J., DuPont, H. L., Ericsson, C. D. & Reves, R. R. Emergence of resistant fecal Escherichia coli in travelers not taking prophylactic antimicrobial agents. Antimicrob. Agents Ch. 34, 515–518 (1990).

  57. 57.

    Angeletti, S. et al. Unusual microorganisms and antimicrobial resistances in a group of Syrian migrants: Sentinel surveillance data from an asylum seekers centre in Italy. Travel Med. Infect. Dis. 14, 115–122 (2016).

  58. 58.

    Ciccozzi, M. et al. Sentinel surveillance data from Eritrean migrants in Italy: The theory of “Healthy Migrants”. Travel Med. Infect. Dis. 22, 58–65 (2018).

  59. 59.

    Aldridge, R. W. et al. Tuberculosis in migrants moving from high-incidence to low-incidence countries: a population-based cohort study of 519 955 migrants screened before entry to England, Wales, and Northern Ireland. Lancet 388, 2510–2518 (2016).

  60. 60.

    Yasin, Y., Biehl, K. & Erol, M. Infection of the Invisible: impressions of a tuberculosis intervention program for migrants in Istanbul. J. Immigr. Minor. Heal. 17, 1481–1486 (2015).

  61. 61.

    Klein, E. Y. et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl Acad. Sci. USA 115, E3463–E3470 (2018).

  62. 62.

    Auta, A. et al. Global access to antibiotics without prescription in community pharmacies: a systematic review and meta-analysis. J. Infect. 78, 8–18 (2019).

  63. 63.

    Yong Kim, J. et al. Limited good and limited vision: multidrug-resistant tuberculosis and global health policy. Soc. Sci. Med. 61, 847–859 (2005).

  64. 64.

    Keenan, J. D. et al. Azithromycin to reduce childhood mortality in Sub-Saharan. Afr. New Engl. J. Med. 378, 1583–1592 (2018).

  65. 65.

    Done, H. Y., Venkatesan, A. K. & Halden, R. U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J. 17, 513–524 (2015).

  66. 66.

    Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Ch. 45, 2054–2059 (2001).

  67. 67.

    Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science 357, 1350–1352 (2017).

  68. 68.

    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).

  69. 69.

    Dowling, R. et al. Estimating the prevalence of toxic waste sites in low- and middle-income countries. Ann. Glob. Health 82, 700–710 (2016).

  70. 70.

    Fang, L. et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci. Rep. 6, 25312 (2016).

  71. 71.

    Jutkina, J., Marathe, N. P., Flach, C. F. & Larsson, D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616–617, 172–178 (2018).

  72. 72.

    Hsu, L. C. et al. Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu(2. Zn.(2+) Al(3+)) addition in various molar ratios. Roy. Soc. Open Sci. 5, 171941 (2018).

  73. 73.

    Karkman, A., Parnanen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80 (2019).

  74. 74.

    Walsh, T. R., Weeks, J., Livermore, D. M. & Toleman, M. A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 11, 355–362 (2011).

  75. 75.

    Ma, L. et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome 5, 154 (2017).

  76. 76.

    Leonard, A. F. C. et al. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 114, 326–333 (2018).

  77. 77.

    Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

  78. 78.

    Moura, A., Henriques, I., Smalla, K. & Correia, A. Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes. Res. Microbiol. 161, 58–66 (2010).

  79. 79.

    Yang, Y., Xu, C., Cao, X., Lin, H. & Wang, J. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology 26, 831–840 (2017).

  80. 80.

    Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

  81. 81.

    Rodriguez-Chueca, J. et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes? Sci. Total Environ. 652, 1051–1061 (2019).

  82. 82.

    Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E. & Torres-Palma, R. A. Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Sci. Total Environ. 575, 1228–1238 (2017).

  83. 83.

    Paulus, G. K. et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Envir. Heal. 222, 635–644 (2019).

  84. 84.

    Narciso-da-Rocha, C. et al. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environ. Int. 118, 179–188 (2018).

  85. 85.

    Su, H. C. et al. Antibiotic resistance, plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. Environ. Sci.: Process. Impacts 16, 324–332 (2014).

  86. 86.

    Hultman, J. et al. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. FEMS Microbiol. Ecol. 94, fiy038 (2018).

  87. 87.

    Fuller, T. et al. The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research. EcoHealth 9, 80–88 (2012).

  88. 88.

    Beugnet, F. & Chalvet-Monfray, K. Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp. Immunol. Micro. 36, 559–566 (2013).

  89. 89.

    Martinez-Urtaza, J., Trinanes, J., Gonzalez-Escalona, N. & Baker-Austin, C. Is El Nino a long-distance corridor for waterborne disease? Nat. Microbiol. 1, 16018 (2016).

  90. 90.

    Yu, P. et al. Elevated levels of pathogenic indicator bacteria and antibiotic resistance genes after Hurricane Harvey’s flooding in Houston. Environ. Sci. Tech. Let. 5, 481–486 (2018).

  91. 91.

    Bartlett, J. G., Gilbert, D. N. & Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 56, 1445–1450 (2013).

  92. 92.

    Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

  93. 93.

    Garcia-Fernandez, E. et al. Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell 171, 1354–1367 (2017).

  94. 94.

    Jayaraman, P. et al. Novel phytochemical-antibiotic conjugates as multitarget inhibitors of Pseudomononas aeruginosa GyrB/ParE and DHFR. Drug Des. Dev. Ther. 7, 449–475 (2013).

  95. 95.

    Li, K. et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J. Med. Chem. 57, 3126–3139 (2014).

  96. 96.

    Theuretzbacher, U., Ardal, C. & Harbarth, S. Linking sustainable use policies to novel economic incentives to stimulate antibiotic research and development. Infect. Dis. Rep. 9, 6836 (2017).

  97. 97.

    Rolain, J. M. & Baquero, F. The refusal of the Society to accept antibiotic toxicity: missing opportunities for therapy of severe infections. Clin. Microb. Infect. 22, 423–427 (2016).

  98. 98.

    Oviano, M., Ramirez, C. L., Barbeyto, L. P. & Bou, G. Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS. Anal. J. Antimicrob. Chemoth 72, 1350–1354 (2017).

  99. 99.

    Otero, F. et al. Rapid detection of antibiotic resistance in Gram-negative bacteria through assessment of changes in cellular morphology. Microb. Drug Resist. 23, 157–162 (2017).

  100. 100.

    Levin, B. R., Baquero, F. & Johnsen, P. J. A model-guided analysis and perspective on the evolution and epidemiology of antibiotic resistance and its future. Curr. Opin. Microbiol. 19, 83–89 (2014).

  101. 101.

    Antonanzas, F. & Goossens, H. The economics of antibiotic resistance: a claim for personalised treatments. Eur. J. Health Econ. 20, 483–485 (2018).

  102. 102.

    Pennini, M. E. et al. Immune stealth-driven O2 serotype prevalence and potential for therapeutic antibodies against multidrug resistant Klebsiella pneumoniae. Nat. Commun. 8, 1991 (2017).

  103. 103.

    Silva, O. N. et al. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci. Rep. 6, 35465 (2016).

  104. 104.

    Matthay, M. A. et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Resp. Med. 7, 154–162 (2019).

  105. 105.

    Ni, Z., Chen, Y., Ong, E. & He, Y. Antibiotic resistance determinant-focused Acinetobacter baumannii vaccine designed using reverse vaccinology. Int. J. Mol. Sci. 18, E458 (2017).

  106. 106.

    Cabral, M. P. et al. Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy. Nat. Commun. 8, 15480 (2017).

  107. 107.

    Jansen, K. U. & Anderson, A. S. The role of vaccines in fighting antimicrobial resistance (AMR). Hum. Vacc. Immunother. 14, 2142–2149 (2018).

  108. 108.

    Marchisio, P. et al. Efficacy of injectable trivalent virosomal-adjuvanted inactivated influenza vaccine in preventing acute otitis media in children with recurrent complicated or noncomplicated acute otitis media. Pediatr. Infect. Dis. J. 28, 855–859 (2009).

  109. 109.

    Campbell, Z. A., Otieno, L., Shirima, G. M., Marsh, T. L. & Palmer, G. H. Drivers of vaccination preferences to protect a low-value livestock resource: Willingness to pay for Newcastle disease vaccines by smallholder households. Vaccine 37, 11–18 (2019).

  110. 110.

    Bessell, P. R. et al. Assessing the impact of a novel strategy for delivering animal health interventions to smallholder farmers. Prev. Vet. Med. 147, 108–116 (2017).

  111. 111.

    Shatzkes, K. et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio 7, e01847–16 (2016).

  112. 112.

    de Dios Caballero, J. et al. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator bacteria, over a 1-year period. mBio 8, e00959–17 (2017).

  113. 113.

    Kongrueng, J. et al. Isolation of Bdellovibrio and like organisms and potential to reduce acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Dis. Aquat. Organ. 124, 223–232 (2017).

  114. 114.

    Boileau, M. J. et al. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am. J. Vet. Res. 77, 1017–1028 (2016).

  115. 115.

    McNeely, D., Chanyi, R. M., Dooley, J. S., Moore, J. E. & Koval, S. F. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can. J. Microbiol. 63, 350–358 (2017).

  116. 116.

    Obolski, U., Stein, G. Y. & Hadany, L. Antibiotic restriction might facilitate the emergence of multi-drug resistance. PLoS Comput. Biol. 11, e1004340 (2015).

  117. 117.

    Lehar, S. M. et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

  118. 118.

    de Gunzburg, J. et al. Protection of the human gut microbiome from antibiotics. J. Infect. Dis. 217, 628–636 (2018).

  119. 119.

    Chahm, T., de Souza, L. F., Dos Santos, N. R., da Silva, B. A. & Rodrigues, C. A. Use of chemically activated termite feces a low-cost adsorbent for the adsorption of norfloxacin from aqueous solution. Water Sci. Technol. Res. 79, 291–301 (2019).

  120. 120.

    Chen, L. et al. Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light. J. hazard. Mater. 371, 566–575 (2019).

  121. 121.

    Kokai-Kun, J. F. et al. The oral beta-lactamase SYN-004 (ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical studies. Antimicrob. Agents Ch. 61, e02197–16 (2017).

  122. 122.

    Connelly, S., Fanelli, B., Hasan, N. A., Colwell, R. R. & Kaleko, M. Oral metallo-beta-lactamase protects the gut microbiome from carbapenem-mediated damage and reduces propagation of antibiotic resistance in pigs. Front. Microbiol. 10, 101 (2019).

  123. 123.

    Ives, S. E. & Richeson, J. T. Use of antimicrobial metaphylaxis for the control of bovine respiratory disease in high-risk cattle. V. Clin. N. Am. -Food A 31, 341–350 (2015).

  124. 124.

    Regev-Shoshani, G. et al. Non-inferiority of nitric oxide releasing intranasal spray compared to sub-therapeutic antibiotics to reduce incidence of undifferentiated fever and bovine respiratory disease complex in low to moderate risk beef cattle arriving at a commercial feedlot. Prev. Vet. Med. 138, 162–169 (2017).

  125. 125.

    Kudo, H. et al. Inhibition effect of flavophospholipol on conjugative transfer of the extended-spectrum beta-lactamase and vanA genes. J. Antibiot. 72, 79–85 (2019).

  126. 126.

    Lin, W., Li, S., Zhang, S. & Yu, X. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Res. 91, 331–338 (2016).

  127. 127.

    Suhartono, S. & Savin, M. Conjugative transmission of antibiotic-resistance from stream water Escherichia coli as related to number of sulfamethoxazole but not class 1 and 2 integrase genes. Mob. Genet. Elem. 6, e1256851 (2016).

  128. 128.

    Cairns, J. et al. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun. Biol. 1, 35 (2018).

  129. 129.

    Brown, V. R. & Bevins, S. N. A review of African swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5, 11 (2018).

  130. 130.

    Water, Sanitation & Hygiene: Reinvent the Toilet Challenge. Bill and Melinda Gates Foundation https://docs.gatesfoundation.org/documents/Fact_Sheet_Reinvent_the_Toilet_Challenge.pdf (2013).

  131. 131.

    Baquero, F., Coque, T. M. & de la Cruz, F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob. Agents Ch. 55, 3649–3660 (2011).

  132. 132.

    Li, Q. et al. NB2001, a novel antibacterial agent with broad-spectrum activity and enhanced potency against beta-lactamase-producing strains. Antimicrob. Agents Ch. 46, 1262–1268 (2002).

  133. 133.

    Jebastin, T. & Narayanan, S. In silico epitope identification of unique multidrug resistance proteins from Salmonella typhi for vaccine development. Comput. Biol. Chem. 78, 74–80 (2018).

  134. 134.

    Withey, S., Cartmell, E., Avery, L. M. & Stephenson, T. Bacteriophages–potential for application in wastewater treatment processes. Sci. Total Environ. 339, 1–18 (2005).

  135. 135.

    Vestergaard, M. et al. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. mBio 8, e01114–17 (2017).

  136. 136.

    Libertucci, J. & Young, V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 4, 35–45 (2019).

  137. 137.

    Millan, B. et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin. Infect. Dis. 62, 1479–1486 (2016).

  138. 138.

    Pamer, E. G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352, 535–538 (2016).

  139. 139.

    Keith, J. W. & Pamer, E. G. Enlisting commensal microbes to resist antibiotic-resistant pathogens. J. Exp. Med. 216, 10–19 (2019).

  140. 140.

    Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).

  141. 141.

    Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

  142. 142.

    Kang, Y. K. et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjugate Chem. 28, 957–967 (2017).

  143. 143.

    Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 968 (2019).

  144. 144.

    Martinez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).

  145. 145.

    van der Grinten, E., Pikkemaat, M. G., van den Brandhof, E. J., Stroomberg, G. J. & Kraak, M. H. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80, 1–6 (2010).

  146. 146.

    Dias, E., Oliveira, M., Manageiro, V., Vasconcelos, V. & Canica, M. Deciphering the role of cyanobacteria in water resistome: hypothesis justifying the antibiotic resistance (phenotype and genotype) in Planktothrix genus. Sci. Total Environ. 652, 447–454 (2019).

  147. 147.

    Yu, Y. et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci. Rep. 7, 4168 (2017).

  148. 148.

    Livanos, A. E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).

  149. 149.

    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).

  150. 150.

    Jørgensen, P. S., Wernli, D., Folke, C. & Carroll, S. P. Changing antibiotic resistance: sustainability transformation to a pro-microbial planet. Curr. Opin. Env. Sust. 25, 66–76 (2017).

  151. 151.

    Durso, L. M. & Cook, K. L. One health and antibiotic resistance in agroecosystems. EcoHealth https://doi.org/10.1007/s10393-018-1324-7 (2018).

  152. 152.

    Fisher, B., Turner, R. K. & Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 68, 643–653 (2009).

  153. 153.

    Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Env. Sust. 2, 66–74 (2010).

Download references

Acknowledgements

J.L.M. is supported by grants from the Instituto de Salud Carlos III (grant no. RD16/0016/0011)—co-financed by the European Development Regional Fund ‘A Way to Achieve Europe’ (grant no. S2017/BMD-3691); InGEMICS-CM, funded by Comunidad de Madrid (Spain) and European Structural and Investment Funds; and by the Spanish Ministry of Economy and Competitivity (grant no. BIO2017-83128-R). T.M.C. and F.B. are supported by the Joint Programming Initiative on Antimicrobial Resistance (grant nos. ST131 JPIAMR2016-AC16/00036 and JPIAMR2016-AC16/00039), the European Development Regional Fund ‘A Way to Achieve Europe’ for co-funding the Spanish R&D National Plan 2012–2019 (grant nos. P15-1581 and PI18-1942), the CIBER (CIBER in Epidemiology and Public Health; grant no. CB06/02/0053), the Regional Government of Madrid (InGeMICS B2017/BMD-3691) and the Fundación Ramón Areces.

Author information

Correspondence to José L. Martínez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark