Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era

Abstract

Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats. Despite evidence that plasmids mobilize ARGs between these habitats, we have a limited understanding of the ecological and evolutionary trajectories that facilitate the emergence of multidrug resistance (MDR) plasmids in clinical pathogens. One Health, a holistic framework, enables exploration of these knowledge gaps. In this Review, we provide an overview of how plasmids drive local and global AMR spread and link different habitats. We explore some of the emerging studies integrating an eco-evolutionary perspective, opening up a discussion about the factors that affect the ecology and evolution of plasmids in complex microbial communities. Specifically, we discuss how the emergence and persistence of MDR plasmids can be affected by varying selective conditions, spatial structure, environmental heterogeneity, temporal variation and coexistence with other members of the microbiome. These factors, along with others yet to be investigated, collectively determine the emergence and transfer of plasmid-mediated AMR within and between habitats at the local and global scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of horizontal gene transfer.
Fig. 2: Antibiotic resistance gene spread in a One Health framework.
Fig. 3: The role of plasmids in the dissemination of antimicrobial resistance genes across habitats.
Fig. 4: Factors driving plasmid fate.

Similar content being viewed by others

References

  1. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. CDC https://stacks.cdc.gov/view/cdc/82532 (2019).

  3. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022−2020 data. ECDC. https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (2022).

  4. World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. WHO https://www.who.int/publications-detail-redirect/9789240027336 (2021).

  5. Jonas, O. B., Irwin, A., Berthe, F. C. J., Le Gall, F. G. & Marquez, P. V. Drug-Resistant Infections: A Threat To Our Economic Future Vol. 2 (World Bank, 2017).

  6. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) — Annual Epidemiological Report for 2021. ECDC https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021 (2022).

  7. Liu, Y.-Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  PubMed  Google Scholar 

  8. Graham, D. W., Knapp, C. W., Christensen, B. T., McCluskey, S. & Dolfing, J. Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci. Rep. 6, 21550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Perry, J., Waglechner, N. & Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Andersson, D. I. et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44, 171–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Levy, S. B., Fitzgerald, G. B. & Macone, A. B. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature 260, 40–42 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Baquero, F., Coque, T. M., Martínez, J.-L., Aracil-Gisbert, S. & Lanza, V. F. Gene transmission in the One Health microbiosphere and the channels of antimicrobial resistance. Front. Microbiol. 10, 02892 (2019).

    Article  Google Scholar 

  18. Mackenzie, J. S. & Jeggo, M. The One Health approach — Why is it so important? Trop. Med. Infect. Dis. 4, 88 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. One Health High-Level Expert Panel (OHHLEP) et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 18, e1010537 (2022).

    Article  Google Scholar 

  20. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Muehlenbein, M. P. Human–wildlife contact and emerging infectious diseases. Hum. Environ. Interact. 1, 79–94 (2012).

    Google Scholar 

  22. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).

    Article  PubMed  Google Scholar 

  23. Watanabe, T. & Fukasawa, T. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. J. Bacteriol. 81, 669–678 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Datta, N. Transmissible drug resistance in an epidemic strain of Salmonella typhimurium. J. Hyg. 60, 301–310 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawkey, P. M. & Jones, A. M. The changing epidemiology of resistance. J. Antimicrob. Chemother. 64, i3–i10 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. When the drugs don’t work. Nat. Microbiol. 1, 16003 (2016).

  27. Mathers, A. J., Peirano, G. & Pitout, J. D. D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 28, 565–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Evans, D. R. Genomic epidemiology of horizontal plasmid transfer among healthcare-associated bacterial pathogens in a tertiary hospital. Thesis, Univ. of Pittsburgh (2021).

  30. Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Acman, M., van Dorp, L., Santini, J. M. & Balloux, F. Large-scale network analysis captures biological features of bacterial plasmids. Nat. Commun. 11, 2452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl Acad. Sci. USA 118, e2008731118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matlock, W. et al. Enterobacterales plasmid sharing amongst human bloodstream infections, livestock, wastewater, and waterway niches in Oxfordshire, UK. eLife 12, e85302 (2023).

    Article  PubMed  Google Scholar 

  37. Shintani, M. et al. Plant species-dependent increased abundance and diversity of IncP-1 plasmids in the rhizosphere: new insights into their role and ecology. Front. Microbiol. 11, 590776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Blau, K. et al. The transferable resistome of produce. mBio 9, e01300–e01318 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heuer, H. et al. IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front. Microbiol. 3, 2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kyselková, M. et al. Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm. FEMS Microbiol. Ecol. 92, fiw075 (2016).

    Article  PubMed  Google Scholar 

  41. Law, A. et al. Biosolids as a source of antibiotic resistance plasmids for commensal and pathogenic bacteria. Front. Microbiol. 12, 606409 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, Q., Chang, W., Zhang, H., Hu, D. & Wang, X. The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from wastewater treatment plants. Front. Microbiol. 10, 633 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rahube, T. O., Viana, L. S., Koraimann, G. & Yost, C. K. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front. Microbiol. 5, 558 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. De la Cruz Barrón, M., Merlin, C., Guilloteau, H., Montargès-Pelletier, E. & Bellanger, X. Suspended materials in river waters differentially enrich class 1 integron- and IncP-1 plasmid-carrying bacteria in sediments. Front. Microbiol. 9, 1443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sriswasdi, S., Yang, C. & Iwasaki, W. Generalist species drive microbial dispersion and evolution. Nat. Commun. 8, 1162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stalder, T., Press, M. O., Sullivan, S., Liachko, I. & Top, E. M. Linking the resistome and plasmidome to the microbiome. ISME J. 13, 2437–2446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Che, Y. et al. Mobile antibiotic resistome in wastewater treatment plants revealed by nanopore metagenomic sequencing. Microbiome 7, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hultman, J. et al. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. FEMS Microbiol 94, fiy038 (2018).

    Google Scholar 

  50. Li, L. et al. Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME J. 14, 1170–1181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res. 47, D195–D202 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Nation, R. L. & Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 22, 535–543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Snesrud, E. et al. A model for transposition of the colistin resistance gene mcr-1 by ISApl1. Antimicrob. Agents Chemother. 60, 6973–6976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiaomin, S. et al. Global impact of mcr-1-positive Enterobacteriaceae bacteria on “One Health”. Crit. Rev. Microbiol. 46, 565–577 (2020).

    Article  PubMed  Google Scholar 

  55. Munoz-Price, L. S. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cui, X., Zhang, H. & Du, H. Carbapenemases in enterobacteriaceae: detection and antimicrobial therapy. Front. Microbiol. 10, 1823 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brink, A. J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 32, 609–616 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19, 56–66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55, 4943–4960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farfour, E. et al. Carbapenemase-producing Enterobacterales outbreak: another dark side of COVID-19. Am. J. Infect. Control. 48, 1533–1536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schweizer, C. et al. Plasmid-mediated transmission of KPC-2 carbapenemase in Enterobacteriaceae in critically ill patients. Front. Microbiol. 10, 276 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tofteland, S., Naseer, U., Lislevand, J. H., Sundsfjord, A. & Samuelsen, Ø. A long-term low-frequency hospital outbreak of KPC-producing Klebsiella pneumoniae involving intergenus plasmid diffusion and a persisting environmental reservoir. PLoS ONE 8, e59015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Evans, D. R. et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife 9, e53886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sheppard, A. E. et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob. Agents Chemother. 60, 3767–3778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He, S. et al. Mechanisms of evolution in high-consequence drug resistance plasmids. mBio 7, 01987-16 (2016).

    Article  Google Scholar 

  66. Weingarten, R. A. et al. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. mBio 9, e02011-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mathers, A. J. et al. Klebsiella quasipneumoniae provides a window into carbapenemase gene transfer, plasmid rearrangements, and patient interactions with the hospital environment. Antimicrob. Agents Chemother. 63, e02513-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bevan, E. R., Jones, A. M. & Hawkey, P. M. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 72, 2145–2155 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Poirel, L., Cattoir, V. & Nordmann, P. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front. Microbiol. 3, 24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hiltunen, T., Virta, M. & Laine, A.-L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Phil. Trans. R. Soc. 372, 20160039 (2017).

    Article  Google Scholar 

  71. Baquero, F. et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00050-19 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stewart, F. M. & Levin, B. R. The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 87, 209–228 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lopatkin, A. J. et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8, 1689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. San Millan, A., Heilbron, K. & MacLean, R. C. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J. 8, 601–612 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Dionisio, F., Zilhão, R. & Gama, J. A. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 102, 29–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Gama, J. A., Zilhão, R. & Dionisio, F. Plasmid interactions can improve plasmid persistence in bacterial populations. Front. Microbiol. 11, 2033 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Horne, T., Orr, V. T. & Hall, J. P. How do interactions between mobile genetic elements affect horizontal gene transfer? Curr. Opin. Microbiol. 73, 102282 (2023).

    Article  PubMed  Google Scholar 

  78. Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Molec. Biol. Rev. 81, e00002–e00017 (2017).

    Article  Google Scholar 

  79. Wein, T., Hülter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat. Commun. 10, 2595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hall, J. P. J., Wright, R. C. T., Guymer, D., Harrison, E. & Brockhurst, M. A. Y. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways. Microbiology 166, 56–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Brockhurst, M. A. & Harrison, E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 30, 534–543 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. MacLean, R. C. & Millan, A. S. Microbial evolution: towards resolving the plasmid paradox. Curr. Biol. 25, R764–R767 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. van Elsas, J. D. & Bailey, M. J. The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42, 187–197 (2002).

    Article  PubMed  Google Scholar 

  84. Van Elsas, J. D., Fry, J., Hirsch, P. R. & Molin, S. in The Horizontal Gene Pool; Bacterial Plasmids And Gene Spread (ed. Thomas, C. M.) 175–206 (Harwood Academic, 2000).

  85. Heuer, H. & Smalla, K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. 36, 1083–1104 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Smalla, K., Jechalke, S. & Top, E. M. Plasmid detection, characterization and ecology. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PLAS-00382014 (2015).

    Article  PubMed  Google Scholar 

  87. Klümper, U. et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11, 152–165 (2017).

    Article  PubMed  Google Scholar 

  88. Wegrzyn, G. & Wegrzyn, A. Stress responses and replication of plasmids in bacterial cells. Microb. Cell Fact. 1, 2 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Saraswat, V., Kim, D. Y., Lee, J. & Park, Y.-H. Effect of specific production rate of recombinant protein on multimerization of plasmid vector and gene expression level. FEMS Microbiol. Lett. 179, 367–373 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Caulcott, C. A. et al. Investigation of the effect of growth environment on the stability of low-copy-number plasmids in Escherichia coli. Microbiology 133, 1881–1889 (1987).

    Article  CAS  Google Scholar 

  91. Cyriaque, V. et al. Lead drives complex dynamics of a conjugative plasmid in a bacterial community. Front. Microbiol. 12, 655903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Stepanauskas, R. et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ. Microbiol. 8, 1510–1514 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Gómez-Sanz, E. et al. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrob. Agents Chemother. 57, 3275–3282 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North Am. 23, 791–815.vii (2009).

    Article  PubMed  Google Scholar 

  96. Paulus, G. K. et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Environ. Health 222, 635–644 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Chow, L. K. M., Ghaly, T. M. & Gillings, M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 99, 21–27 (2021).

    Article  CAS  Google Scholar 

  98. Kaplan, E., Marano, R. B. M., Jurkevitch, E. & Cytryn, E. Enhanced bacterial fitness under residual fluoroquinolone concentrations is associated with increased gene expression in wastewater-derived, qnr plasmid-harboring strains. Front. Microbiol. 9, 1176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cairns, J. et al. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun. Biol. 1, 1–8 (2018).

    Article  CAS  Google Scholar 

  100. Gullberg, E., Albrecht, L. M., Karlsson, C., Sandegren, L. & Andersson, D. I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 5, e01918-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ngigi, A. N., Magu, M. M. & Muendo, B. M. Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environ. Monit. Assess. 192, 18 (2019).

    Article  PubMed  Google Scholar 

  102. Rodriguez-Mozaz, S. et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 140, 105733 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. He, Y. et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3, 4 (2020).

    Google Scholar 

  104. Stanton, I. C., Murray, A. K., Zhang, L., Snape, J. & Gaze, W. H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. 3, 467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Kraupner, N. et al. Selective concentrations for trimethoprim resistance in aquatic environments. Environ. Int. 144, 106083 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Clarke, L., Pelin, A., Phan, M. & Wong, A. The effect of environmental heterogeneity on the fitness of antibiotic resistance mutations in Escherichia coli. Evol. Ecol. 34, 379–390 (2020).

    Article  Google Scholar 

  109. Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Yao, Y. et al. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01705-2 (2022).

    Article  PubMed  Google Scholar 

  111. Lehtinen, S., Huisman, J. S. & Bonhoeffer, S. Evolutionary mechanisms that determine which bacterial genes are carried on plasmids. Evol. Lett. 5, 290–301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wang, Y., Batra, A., Schulenburg, H. & Dagan, T. Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. Phil. Trans. R. Soc. 377, 20200467 (2021).

    Article  Google Scholar 

  113. Rodríguez-Beltrán, J. et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc. Natl Acad. Sci. USA 117, 15755–15762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schneiders, S. et al. Spatiotemporal variations in growth rate and virulence plasmid copy number during Yersinia pseudotuberculosis infection. Infect. Immun. 89, e00710–e00720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Näsvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338, 384–387 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kasagaki, S., Hashimoto, M. & Maeda, S. Subminimal inhibitory concentrations of ampicillin and mechanical stimuli cooperatively promote cell-to-cell plasmid transformation in Escherichia coli. Curr. Res. Microb. Sci. 3, 100130 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao, X., Zeng, F., Li, R., Liu, Y. & Wang, Z. Subinhibitory concentration of colistin promotes the conjugation frequencies of Mcr-1- and blaNDM-5-positive plasmids. Microbiol. Spectr. 10, e02160-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lopatkin, A. J. et al. Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol. 1, 16044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, G., Thomsen, L. E. & Olsen, J. E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. J. Antimicrob. Chemother. 77, 556–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Yu, Z., Wang, Y., Lu, J., Bond, P. L. & Guo, J. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. ISME J. https://doi.org/10.1038/s41396-021-00909-x (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hu, X. et al. Plasmid binding to metal oxide nanoparticles inhibited lateral transfer of antibiotic resistance genes. Environ. Sci. Nano 6, 1310–1322 (2019).

    Article  CAS  Google Scholar 

  122. Parra, B., Tortella, G. R., Cuozzo, S. & Martínez, M. Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids. Ecotoxicol. Environ. Saf. 169, 662–668 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Xiong, R. et al. Indole inhibits IncP-1 conjugation system mainly through promoting korA and korB expression. Front. Microbiol. 12, 628133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kosterlitz, O. et al. Estimating the transfer rates of bacterial plasmids with an adapted Luria–Delbrück fluctuation analysis. PLoS Biol. 20, e3001732 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huisman, J. S. et al. Estimating plasmid conjugation rates: a new computational tool and a critical comparison of methods. Plasmid 121, 102627 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Cabezón, E., de la Cruz, F. & Arechaga, I. Conjugation inhibitors and their potential use to prevent dissemination of antibiotic resistance genes in bacteria. Front. Microbiol. 8, 2329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nahum, J. R. et al. A tortoise–hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria. Proc. Natl Acad. Sci. USA 112, 7530–7535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Perfeito, L., Pereira, M. I., Campos, P. R. A. & Gordo, I. The effect of spatial structure on adaptation in Escherichia coli. Biol. Lett. 4, 57–59 (2008).

    Article  PubMed  Google Scholar 

  130. France, M. T. & Forney, L. J. The relationship between spatial structure and the maintenance of diversity in microbial populations. Am. Nat. 193, 503–513 (2019).

    Article  PubMed  Google Scholar 

  131. Yang, Y., Liu, G., Ye, C. & Liu, W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J. Hazard. Mater. 361, 283–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Maciel-Guerra, A. et al. Dissecting microbial communities and resistomes for interconnected humans, soil, and livestock. ISME J. https://doi.org/10.1038/s41396-022-01315-7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M. & Brownstein, J. S. antibiotic resistance increases with local temperature. Nat. Clim. Change 8, 510–514 (2018).

    Article  CAS  Google Scholar 

  134. Louvet, J. N. et al. Vancomycin sorption on activated sludge Gram+ bacteria rather than on EPS; 3D confocal laser scanning microscopy time-lapse imaging. Water Res. 124, 290–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Borer, B. & Or, D. Bacterial age distribution in soil — generational gaps in adjacent hot and cold spots. PLoS Comput. Biol. 18, e1009857 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kloos, J., Gama, J. A., Hegstad, J., Samuelsen, Ø. & Johnsen, P. J. Piggybacking on niche adaptation improves the maintenance of multidrug‐resistance plasmids. Mol. Biol. Evol. 38, 3188–3201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stalder, T. et al. Evolving populations in biofilms contain more persistent plasmids. Mol. Biol. Evol. 37, 1563–1576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ponciano, J. M., La, H.-J., Joyce, P. & Forney, L. J. Evolution of diversity in spatially structured Escherichia coli populations. Appl. Environ. Microbiol. 75, 6047–6054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boles, B. R., Thoendel, M. & Singh, P. K. Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl Acad. Sci. USA 101, 16630–16635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Eastman, J. M., Harmon, L. J., La, H.-J., Joyce, P. & Forney, L. J. The onion model, a simple neutral model for the evolution of diversity in bacterial biofilms. J. Evol. Biol. 24, 2496–2504 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Santos-Lopez, A., Marshall, C. W., Scribner, M. R., Snyder, D. J. & Cooper, V. S. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 8, e47612 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J. & Lombó, F. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9, 898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chan, S. et al. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. npj Biofilms Microbiomes 5, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ridenhour, B. J. et al. Persistence of antibiotic resistance plasmids in bacterial biofilms. Evol. Appl. 10, 640–647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Metzger, G. A. et al. Biofilms preserve transmissibility of a multi-drug resistance plasmid. npj Biofilms Microbiomes 8, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. De Gelder, L., Ponciano, J. M., Joyce, P. & Top, E. M. Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology 153, 452–463 (2007).

    Article  PubMed  Google Scholar 

  149. Røder, H. L. et al. Biofilms can act as plasmid reserves in the absence of plasmid specific selection. npj Biofilms Microbiomes 7, 1–6 (2021).

    Article  Google Scholar 

  150. Teal, T. K., Lies, D. P., Wold, B. J. & Newman, D. K. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl. Environ. Microbiol. 72, 7324–7330 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Werner, E. et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70, 6188–6196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wood, T. K., Knabel, S. J. & Kwan, B. W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Coutu, S., Rossi, L., Barry, D. A., Rudaz, S. & Vernaz, N. Temporal variability of antibiotics fluxes in wastewater and contribution from hospitals. PLoS ONE 8, e53592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Marti, E., Variatza, E. & Balcazar, J. L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22, 36–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Schwartz, D. J., Langdon, A. E. & Dantas, G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 12, 82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. San Millan, A. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Stevenson, C., Hall, J. P. J., Brockhurst, M. A. & Harrison, E. Plasmid stability is enhanced by higher-frequency pulses of positive selection. Proc. Natl Acad. Sci. USA 285, 20172497 (2018).

    Google Scholar 

  158. Forsyth, V. S. et al. Rapid growth of uropathogenic Escherichia coli during human urinary tract infection. mBio 9, e00186-18 (2018).

  159. Gibson, B., Wilson, D. J., Feil, E. & Eyre-Walker, A. The distribution of bacterial doubling times in the wild. Proc. Biol. Sci. 285, 20180789 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. Harris, D. & Paul, E. A. Measurement of bacterial growth rates in soil. Appl. Soil. Ecol. 1, 277–290 (1994).

    Article  Google Scholar 

  161. Bottery, M. J. Ecological dynamics of plasmid transfer and persistence in microbial communities. Curr. Opin. Microbiol. 68, 102152 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. De Gelder, L., Vandecasteele, F. P. J., Brown, C. J., Forney, L. J. & Top, E. M. Plasmid donor affects host range of promiscuous IncP-1 plasmid pB10 in an activated-sludge microbial community. Appl. Environ. Microbiol. 71, 5309–5317 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Heß, S., Kneis, D., Virta, M. & Hiltunen, T. The spread of the plasmid RP4 in a synthetic bacterial community is dependent on the particular donor strain. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiab147 (2021).

    Article  PubMed  Google Scholar 

  164. Musovic, S., Klümper, U., Dechesne, A., Magid, J. & Smets, B. F. Long-term manure exposure increases soil bacterial community potential for plasmid uptake. Environ. Microbiol. Rep. 6, 125–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Li, L. et al. Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environ. Sci. Technol. Lett. 5, 260–265 (2018).

    Article  CAS  Google Scholar 

  166. Olesen, A. K. et al. IncHI1A plasmids potentially facilitate horizontal flow of antibiotic resistance genes to pathogens in microbial communities of urban residential sewage. Mol. Ecol. 31, 1595–1608 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Pinilla-Redondo, R. et al. Broad dissemination of plasmids across groundwater-fed rapid sand filter microbiomes. mBio 12, e03068-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Klümper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015).

    Article  PubMed  Google Scholar 

  169. Kottara, A., Carrilero, L., Harrison, E., Hall, J. P. J. & Brockhurst, M. A. Y. The dilution effect limits plasmid horizontal transmission in multispecies bacterial communities. Microbiology 167, 001086 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Alonso-del Valle, A. et al. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat. Commun. 12, 2653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bottery, M. J., Pitchford, J. W. & Friman, V.-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 15, 939–948 (2021).

    Article  PubMed  Google Scholar 

  172. Hall, J. P. J., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl Acad. Sci. USA 113, 8260–8265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Loftie-Eaton, W. et al. Contagious antibiotic resistance: plasmid transfer among bacterial residents of the zebrafish gut. Appl. Environ. Microbiol. 87, e02735-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Noyes, N. R. et al. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing. Microbiome 5, 142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Slizovskiy, I. B. et al. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes. Microbiome 10, 185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Björkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).

    Article  PubMed  Google Scholar 

  177. Topp, E., Larsson, D. G. J., Miller, D. N., Van den Eede, C. & Virta, M. P. J. Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing. FEMS Microbiol. Ecol. 94, fix185 (2018).

    Article  Google Scholar 

  178. Bürgmann, H. et al. Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiol. Ecol. 94, fiy101 (2018).

    Article  Google Scholar 

  179. Smalla, K., Cook, K., Djordjevic, S. P., Klümper, U. & Gillings, M. Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiol. Ecol. 94, fiy195 (2018).

    Article  CAS  Google Scholar 

  180. Pospíšil, J. et al. Bacterial nanotubes as a manifestation of cell death. Nat. Commun. 11, 4963 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Schmartz, G. P. et al. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res. 50, D273–D278 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F. & Arechaga, I. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39, 81–95 (2015).

    PubMed  Google Scholar 

  183. Szpirer, C., Top, E., Couturier, M. & Mergeay, M. Y. Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145, 3321–3329 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Coluzzi, C., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol. Biol. Evol. 39, msac115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Thomas, C. M. & Summers, D. Bacterial plasmids. In Encyclopedia of Life Sciences (American Cancer Society, 2008).

  187. Pesesky, M. W., Tilley, R. & Beck, D. A. C. Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Plasmid 102, 10–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat. Microbiol. 5, 343–353 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Kalmar, L. et al. HAM-ART: an optimised culture-free Hi-C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet. 18, e1009776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Beaulaurier, J. et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 36, 61–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Diebold, P. J., New, F. N., Hovan, M., Satlin, M. J. & Brito, I. L. Linking plasmid-based β-lactamases to their bacterial hosts using single-cell fusion PCR. eLife 10, e66834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Roman, V. L., Merlin, C., Virta, M. P. J. & Bellanger, X. EpicPCR 2.0: technical and methodological improvement of a cutting-edge single-cell genomic approach. Microorganisms 9, 1649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Musovic, S., Oregaard, G., Kroer, N. & Sørensen, S. J. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among Gram-positive and Gram-negative bacteria indigenous to the barley rhizosphere. Appl. Environ. Microbiol. 72, 6687–6692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Batani, G., Bayer, K., Böge, J., Hentschel, U. & Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 9, 18618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Macedo, G. et al. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms. Environ. Sci. Technol. 56, 11398–11408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Arias-Andres, M., Klümper, U., Rojas-Jimenez, K. & Grossart, H.-P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 237, 253–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Vrancianu, C. O., Popa, L. I., Bleotu, C. & Chifiriuc, M. C. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance. Front. Microbiol. 11, 761 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Jalasvuori, M., Friman, V.-P., Nieminen, A., Bamford, J. K. H. & Buckling, A. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol. Lett. 7, 902–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Novick, R. P. Plasmid incompatibility. Microbiol. Rev. 51, 381–395 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Buckner, M. M. C., Ciusa, M. L. & Piddock, L. J. V. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol. Rev. 42, 781–804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lazdins, A. et al. Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS ONE 15, e0225202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kamruzzaman, M., Shoma, S., Thomas, C. M., Partridge, S. R. & Iredell, J. R. Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS ONE 12, e0172913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lauritsen, I., Porse, A., Sommer, M. O. A. & Nørholm, M. H. H. A versatile one-step CRISPR–Cas9 based approach to plasmid-curing. Microb. Cell Fact. 16, 135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Hao, M. et al. CRISPR–Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 64, e00843-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bikard, D. et al. Exploiting CRISPR–Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health 2, e398–e405 (2018).

    Article  PubMed  Google Scholar 

  210. Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 19, 287–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Anjum, M. F. et al. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr. Opin. Microbiol. 64, 152–158 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Huijbers, P. M. C., Flach, C.-F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Liguori, K. et al. Antimicrobial resistance monitoring of water environments: a framework for standardized methods and quality control. Environ. Sci. Technol. 56, 9149–9160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Joint Programming Initiative On Antimicrobial Resistance: Strategic Research And Innovation Agenda on Antimicrobial Resistance (JPIAMR, 2021).

  216. ECDC, EFSA, EMA & OECD Antimicrobial Resistance In The EU/EEA: A One Health Response Vol. 15 (OECD, 2022).

  217. One Health Joint Plan of Action (2022–2026). Working together for the health of humans, animals, plants and the environment. FAO, UNEP, WHO & WOAH https://doi.org/10.4060/cc2289en (2022).

  218. Martínez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116–123 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Elg and O. Kosterlitz for critical reading of this manuscript and B. Robison for helpful discussions on data visualization. The authors were partially supported by the National Institute of Food and Agriculture (NIFA) (grant 2018–67017–27630) of the US Department of Agriculture; the National Institute of Allergy and Infectious Diseases Extramural Activities (grant R01 AI084918) of the National Institutes of Health (NIH); and the Bioinformatics and Computational Biology Program at the University of Idaho in partnership with the Institute for Bioinformatics and Evolutionary Studies (now the Institute for Interdisciplinary Data Sciences (IIDS)).

Author information

Authors and Affiliations

Authors

Contributions

S.C.-B. and T.S. contributed to the discussion of content and literature collection and wrote the article. S.C.-B. performed the meta-analysis. E.M.T. provided critical reviews throughout the process. All authors thoroughly reviewed and edited the article.

Corresponding author

Correspondence to Thibault Stalder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Danna Gifford, Craig MacLean, Alvaro San Millan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Eco-evolutionary

(Perspectives, approaches, studies, factors, trajectories). Refers to the fact that interactions between ecological and evolutionary processes are reciprocal.

Habitat

A place where bacteria live, from the human body to any natural environment, including all biotic and abiotic factors of their surroundings.

One Health

Definition from the One Health High-Level Expert Panel (OHHLEP): an integrated, unifying approach that aims to sustainably balance and optimize the health of people, animals and ecosystems. One Health recognizes that the health of humans, domestic and wild animals, plants and the wider environment (including ecosystems) is closely linked and interdependent. The approach mobilizes multiple sectors, disciplines and communities at varying levels of society to work together to foster well-being and tackle threats to health and ecosystems, while addressing the collective need for healthy food, water, energy and air, taking action on climate change and contributing to sustainable development.

Plasmid persistence

The ability of a plasmid to maintain itself in a population or community in the presence or absence of known selection for the plasmid.

Plasmid stability

The ability of a plasmid to maintain itself in a population in the absence of known selection for the plasmid.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañeda-Barba, S., Top, E.M. & Stalder, T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol 22, 18–32 (2024). https://doi.org/10.1038/s41579-023-00926-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00926-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology