Silicon limitation facilitates virus infection and mortality of marine diatoms


Diatoms are among the most globally distributed and ecologically successful organisms in the modern ocean, contributing upwards of 40% of total marine primary productivity1,2. By converting dissolved silicon into biogenic silica, and photosynthetically fixing carbon dioxide into particulate organic carbon, diatoms effectively couple the silicon (Si) and carbon cycles and ballast substantial vertical flux of carbon out of the euphotic zone into the mesopelagic and deep ocean3,4,5. Viruses are key players in ocean biogeochemical cycles6,7, yet little is known about how viral infection specifically impacts diatom populations. Here, we show that Si limitation facilitates virus infection and mortality in diatoms in the highly productive coastal waters of the California Current Ecosystem. Using metatranscriptomic analysis of cell-associated diatom viruses and targeted quantification of extracellular viruses, we found a link between Si stress and the early, active and lytic stages of viral infection. This relationship was also observed in cultures of the bloom-forming diatom Chaetoceros tenuissimus, where Si stress accelerated virus-induced mortality. Together, these findings contextualize viruses within the ecophysiological framework of Si availability and diatom-mediated biogeochemical cycling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Station map, phytoplankton communities, Si stress and indicators of mortality during the DYEatom cruise in the California Current Ecosystem.
Fig. 2: Patterns of virus infection in diatom populations in the California Current Ecosystem.
Fig. 3: The impact of Si limitation on diatom host–virus dynamics in laboratory cultures of C. tenuissimus.
Fig. 4: Conceptual model of diatom host–virus dynamics and impacts on biogeochemical cycling.

Data availability

All cruise-related data are available publicly at the Biological and Chemical Oceanography Data Management Office under the project number 550825 ( The metatranscriptomic data reported in this paper have been deposited in the NCBI sequence read archive (BioProject accession no. PRJNA528986, BioSample accession nos SAMN11263616SAMN11263639 and SAMN11258802SAMN11258825). The assembled contigs used in this study can also be found at and BCO-DMO project number 558198 ( All data generated or analysed during the current study are included in this published article and its supplementary information files.


  1. 1.

    Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 9, 359–372 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L. & Armstrong, R. A. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochem. Cycles 20, GB2015 (2006).

    Article  CAS  Google Scholar 

  4. 4.

    Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    Krause, J. W. et al. The effects of biogenic silica detritus, zooplankton grazing, and diatom size structure on silicon cycling in the euphotic zone of the eastern equatorial Pacific. Limnol. Oceanogr. 55, 2608–2622 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Ann. Rev. Mar. Sci. 5, 477–501 (2013).

    PubMed  Article  Google Scholar 

  11. 11.

    Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).

    Article  Google Scholar 

  12. 12.

    Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Brussaard, C. P. D. Viral control of phytoplankton populations—a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).

    PubMed  Article  Google Scholar 

  14. 14.

    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

    PubMed  Article  Google Scholar 

  15. 15.

    Steward, G. F. et al. Are we missing half of the viruses in the ocean? ISME J. 7, 672–679 (2013).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Culley, A. New insight into the RNA aquatic virosphere via viromics. Virus Res. 244, 84–89 (2018).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Moniruzzaman, M. et al. Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Lassiter, A. M., Wilkerson, F. P., Dugdale, R. C. & Hogue, V. E. Phytoplankton assemblages in the CoOP-WEST coastal upwelling area. Deep Sea Res. II 53, 3063–3077 (2006).

    Article  Google Scholar 

  19. 19.

    Krause, J. W., Brzezinski, M. A., Villareal, T. A. & Wilson, C. Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnol. Oceanogr. 57, 1084–1098 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Smith, D. C., Steward, G. F., Long, R. A. & Azam, F. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep Sea Res. II 42, 75–97 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    Berges, J. A. & Falkowski, P. G. Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol. Oceanogr. 43, 129–135 (1998).

    CAS  Article  Google Scholar 

  22. 22.

    Brzezinski, M. A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).

    CAS  Article  Google Scholar 

  23. 23.

    Bender, S. J., Durkin, C. A., Berthiaume, C. T., Morales, R. L. M. & Armbrust, E. Transcriptional responses of three model diatoms to nitrate limitation of growth. Front. Mar. Sci. 1, 3 (2014).

    Article  Google Scholar 

  24. 24.

    Lampe, R. H. et al. Divergent gene expression among phytoplankton taxa in response to upwelling. Environ. Microbiol. 20, 3069–3082 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Wang, N. Lysis timing and bacteriophage fitness. Genetics 172, 17–26 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. & Vardi, A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 10, 1742 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508–512 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Dugdale, R. C., Wilkerson, F. P. & Minas, H. J. The role of a silicate pump in driving new production. Deep Sea Res. I 42, 697–719 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    Bidle, K. D., Brzezinski, M. A., Long, R. A., Jones, J. L. & Azam, F. Diminished efficiency in the oceanic silica pump caused by bacterially-mediated silica dissolution. Limnol. Oceanogr. 48, 1855–1868 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    Brzezinski, M. A., Jones, J. L., Bidle, K. D. & Azam, F. The balance between silica production and silica dissolution in the sea: insights from Monterey Bay, California applied to the global data set. Limnol. Oceanogr. 48, 1846–1854 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    Krause, J. W., Nelson, D. M. & Brzezinski, M. A. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep Sea Res. II 58, 434–448 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Brzezinski, M. A. & Phillips, D. R. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol. Oceanogr. 42, 856–865 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    Brzezinski, M. A. & Washburn, L. Phytoplankton primary productivity in the Santa Barbara Channel: effects of wind-driven upwelling and mesoscale eddies. J. Geophys. Res. Ocean. 116, C12013 (2011).

    Article  Google Scholar 

  34. 34.

    Nelson, D. M. & Brzezinski, M. A. Diatom growth and productivity in an oligo-trophic midocean gyre: a 3-yr record from the Sargasso Sea near Bermuda. Limnol. Oceanogr. 42, 473–486 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Krause, J. W., Lomas, M. W. & Nelson, D. M. Biogenic silica at the Bermuda Atlantic Time-series Study site in the Sargasso Sea: Temporal changes and their inferred controls based on a 15-year record. Glob. Biogeochem. Cycles 23, 1–14 (2009).

    Article  CAS  Google Scholar 

  36. 36.

    Hoppe, H. in Handbook of Methods in Aquatic Microbial Ecology 1st edn (eds Kemp, P. F. et al.) 423–431 (Lewis Publishers, 1993).

  37. 37.

    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Pearson, W. R. Finding protein and nucleotide similarities with FASTA. Curr. Protoc. Bioinform. 53, 3.9.1–25 (2016).

  41. 41.

    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Schmieder, R., Lim, Y. W. & Edwards, R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics 28, 433–435 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  45. 45.

    Sonnhammer, E. L. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. 6th International Conference on Intelligent Systems for Molecular Biology (eds Glasgow, J. et al.) 175– 182 (Association for the Advancement of Artificial Intelligence, 1998).

  46. 46.

    Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Gifford, S. M., Sharma, S., Rinta-Kanto, J. M. & Moran, M. A. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 5, 461–472 (2011).

    PubMed  Article  Google Scholar 

  48. 48.

    Moran, M. A. et al. Sizing up metatranscriptomics. ISME J. 7, 237–243 (2013).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Satinsky, B. M., Gifford, S. M., Crump, B. C. & Moran, M. A. in Methods in Enzymology Vol. 531 (Ed Delong, E. F.) 237–250 (Elsevier, 2013).

  50. 50.

    Bertrand, E. M. et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc. Natl Acad. Sci USA 112, 9938–9943 (2015).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ottesen, E. A. et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 5, 1881–1895 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).

    Article  Google Scholar 

  59. 59.

    Mueller, J. A., Culley, A. I. & Steward, G. F. Variables influencing extraction of nucleic acids from microbial plankton (viruses, bacteria, and protists) collected on nanoporous aluminum oxide filters. Appl. Environ. Microbiol. 80, 3930–3942 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Carriere, M. et al. A novel, sensitive, and specific RT-PCR technique for quantitation of hepatitis C virus replication. J. Med. Virol. 79, 155–160 (2007).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Pasternak, A. O. et al. Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J. Clin. Microbiol. 46, 2206–2211 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Hernández-Arteaga, S. & López-Revilla, R. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR. Infect. Agents Cancer 5, 9 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Chen, L., Edelstein, T. & McLachlan, J. Bonnemaisonia hamifera hariot in nature and in culture. J. Phycol. 5, 211–220 (1969).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Tomaru, Y., Shirai, Y., Toyoda, K. & Nagasaki, K. Isolation and characterisation of a single-stranded DNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus. Aquat. Microb. Ecol. 64, 175–184 (2011).

    Article  Google Scholar 

  66. 66.

    Gorbunov, M. Y. & Falkowski, P. G. Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In Photosynthesis: Fundamental Aspects to Global Perspectives-Proc. 13th International Congress of Photosynthesis (eds Van der Est, A. & Bruce, D.) 1029–1031 (Allen and Unwin, London, 2004).

  67. 67.

    Suttle, C. A. in Handbook of Methods in Aquatic Microbial Ecology 1st edn (eds Kemp, P. F. et al.) 121–134 (Lewis Publishers, 1993).

  68. 68.

    Lippé, R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92, e01765–17 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Klee, A. J. A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18, 91–98 (1993).

    Article  Google Scholar 

Download references


We would like to thank the captain and the crew of the RV Point Sur, J. Jones, H. McNair, E. Lachenmyer, I. Marquez and J. Ossolinski, for technical assistance during the cruise. Surface-tethered drogues used on the cruise were provided by R. Chant and E. Hunter. Thank you to Y. Tomaru for providing the laboratory diatom host–virus systems; J. Latham for technical support; B. Knowles, E. Zelzion and K. Bondoc for their useful discussions on statistical analysis; and B. Knowles and J. Nissimov for their helpful comments on the manuscript. This work was supported by grants from the National Science Foundation (grant nos OCE-13339329 and OCE-1559179 to K.T., OCE-1334387 to M.A.B., OCE-1155663 to J.W.K., and OCE-1637632 and OCE-1756884 to A.E.A.), the Gordon and Betty Moore Foundation (grant nos GBMF3301 to B.A.S.V.M. and K.D.B., GBMF3789 to K.D.B. and GBMF3828 to A.E.A.), the National Oceanic and Atmospheric Administration (grant no. NA15OAR4320071 to A.E.A.) and a postdoctoral fellowship from the Simons Foundation (grant no. 548156 to C.F.K.). Salary support for C.F.K. was also provided by the Institute of Earth, Ocean and Atmospheric Sciences at Rutgers University, the Rappaport Fund for Advanced Studies and Israel’s Council for Higher Education.

Author information




C.F.K. and K.T. conceived the project, designed the experiments and wrote the paper. C.F.K. and W.P.B. conducted the laboratory culture-based experiments. C.F.K. performed the metatranscriptomic and statistical analyses. C.F.K. and K.T. processed and analysed the field samples for extracellular virus. M.M. assisted with the 18S rRNA and RdRP phylogenetic analyses. J.W.K. was the Chief Scientist of the DYEatom cruise. J.W.K., M.A.B., B.A.S.V.M., K.D.B. and K.T. were involved in the cruise planning. J.W.K. and M.A.B. collected and analysed the silica-production, nutrient and bulk particle data. B.R.E. and B.A.S.V.M. conducted and provided the on-ship protease activity data. K.D.B. and K.T. collected all other field samples. A.E.A. extracted the RNA and generated the metatranscriptome and 18S rRNA data. A.E.A. and J.P.M. performed the bioinformatic analyses. All authors provided comments on the manuscript.

Corresponding author

Correspondence to Kimberlee Thamatrakoln.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Tables 1–3.

Reporting Summary

Supplementary Dataset 1

Metatranscriptome and diatom virus analysis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kranzler, C.F., Krause, J.W., Brzezinski, M.A. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat Microbiol 4, 1790–1797 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing