Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner

Abstract

Antibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. Here we identify an antiviral effect of commonly used aminoglycoside antibiotics. We show that topical mucosal application of aminoglycosides prophylactically increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota, because aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by Toll-like receptor 3, and required Toll/interleukin-1-receptor-domain-containing adapter-inducing interferon-β signalling adaptor, and Interferon regulatory factors 3 and 7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express Toll-like receptor 3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistance in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Vaginal application of neomycin confers prophylactic and post-exposure antiviral protection against HSV-2 in a microbiota-independent manner.
Fig. 2: Vaginal application of most aminoglycosides induces interferon-stimulated genes, which is linked to antiviral protection.
Fig. 3: Aminoglycosides confer broad protection against both RNA and DNA viruses.
Fig. 4: Aminoglycosides mediate antiviral immunity via the TLR3–TRIF–IRF3/7 signalling pathway.
Fig. 5: Recruited DCs are required for ISG induction by neomycin.
Fig. 6: Recruited XCR1+ DCs are required for ISG induction.

References

  1. 1.

    Badal, S., Her, Y. F. & Maher, L. J. Nonantibiotic effects of fluoroquinolones in mammalian cells. J. Biol. Chem. 290, 22287–22297 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 192ra85 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Moullan, N. et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 10, 1681–1691 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765.

  5. 5.

    Linehan, M. M. et al. In vivo role of nectin-1 in entry of herpes simplex virus type 1 (HSV-1) and HSV-2 through the vaginal mucosa. J. Virol. 78, 2530–2536 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Shin, H. & Iwasaki, A. Generating protective immunity against genital herpes. Trends Immunol. 34, 487–494 (2013).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Corey, L. & Schiffer, J. T. Rapid host immune response and viral dynamics in herpes simplex virus-2 infection. Nat. Med. 19, 280–290 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Khoury-Hanold, W. et al. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe 19, 788–799 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    McDermott, M. R. et al. Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2. J. Virol. 51, 747–753 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Busscher, G. F., Rutjes, F. P. J. T. & van Delft, F. L. 2-Deoxystreptamine: central scaffold of aminoglycoside antibiotics. Chem. Rev. 105, 775–792 (2005).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Meier, E. et al. A family of interferon-induced Mx-related mRNAs encodes cytoplasmic and nuclear proteins in rat cells. J. Virol. 62, 2386–2393 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Staeheli, P., Grob, R., Meier, E., Sutcliffe, J. G. & Haller, O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 8, 4518–4523 (1988).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Haller, O., Staeheli, P., Schwemmle, M. & Kochs, G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol. 23, 154–163 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Grimm, D. et al. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc. Natl Acad. Sci. USA 104, 6806–6811 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yockey, L. J. et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166, 1247–1256 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Schmid, S., Mordstein, M., Kochs, G., Garcia-Sastre, A. & tenOever, B. R. Transcription factor redundancy ensures induction of the antiviral state. J. Biol. Chem. 285, 42013–42022 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Shortman, K. & Heath, W. R. The CD8+ dendritic cell subset. Immunol. Rev. 234, 18–31 (2010).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Heng, T. S. P. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Crozat, K. et al. Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8+ type. J. Immunol. 187, 4411–4415 (2011).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Yamazaki, C. et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J. Immunol. 190, 6071–6082 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Begg, E. J. & Barclay, M. L. Aminoglycosides—50 years on. Br. J. Clin. Pharmacol. 39, 597–603 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rizzi, M. D. & Hirose, K. Aminoglycoside ototoxicity. Curr. Opin. Otolaryngol. Head Neck Surg. 15, 352–357 (2007).

    Article  PubMed  Google Scholar 

  32. 32.

    Matsui, J. I., Gale, J. E. & Warchol, M. E. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J. Neurobiol. 61, 250–266 (2004).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Cheng, A. G., Cunningham, L. L. & Rubel, E. W. Mechanisms of hair cell death and protection. Curr. Opin. Otolaryngol. Head. Neck Surg. 13, 343–348 (2005).

    Article  PubMed  Google Scholar 

  34. 34.

    Wargo, K. A. & Edwards, J. D. Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract. 27, 573–577 (2014).

    Article  PubMed  Google Scholar 

  35. 35.

    Laurent, G., Kishore, B. K. & Tulkens, P. M. Aminoglycoside-induced renal phospholipidosis and nephrotoxicity. Biochem. Pharmacol. 40, 2383–2392 (1990).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ryu, D. H. & Rando, R. R. Aminoglycoside binding to human and bacterial A-site rRNA decoding region constructs. Bioorg. Med. Chem. 9, 2601–2608 (2001).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Recht, M. I., Fourmy, D., Blanchard, S. C., Dahlquist, K. D. & Puglisi, J. D. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J. Mol. Biol. 262, 421–436 (1996).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Walter, F., Vicens, Q. & Westhof, E. Aminoglycoside–RNA interactions. Curr. Opin. Chem. Biol. 3, 694–704 (1999).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Rausch, K. et al. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep. 18, 804–815 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Retallack, H. et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl Acad. Sci. USA 113, 14408–14413 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Porter, J. D. et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J. Antimicrob. Chemother. 71, 2767–2781 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sistigu, A. et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hashino, E. & Shero, M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res. 704, 135–140 (1995).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Myrdal, S. E. & Steyger, P. S. TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear. Res. 204, 170–182 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Assas, B. M., Wakid, M. H., Zakai, H. A., Miyan, J. A. & Pennock, J. L. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 147, 292–304 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Moestrup, S. K. et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J. Clin. Invest. 96, 1404–1413 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Christensen, E. I. & Birn, H. Megalin and cubilin: multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 3, 258–268 (2002).

    Article  Google Scholar 

  48. 48.

    Iyoda, T. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195, 1289–1302 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488–495 (2009).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Hong, S. et al. Evidence that antibiotics bind to human mitochondrial ribosomal RNA has implications for aminoglycoside toxicity. J. Biol. Chem. 290, 19273–19286 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Horisberger, M. A., Staeheli, P. & Haller, O. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. Proc. Natl Acad. Sci. USA 80, 1910–1914 (1983).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Kong for his help with analysing the microarray data, and H. Dong for animal support. The authors also thank P. Biswal for help with visualizing the microarray data. This study was supported by funding from the National Institutes of Health (AI054359, R56AI125504, R01EB000487 and 1R21AI131284 to A.I.). A.I. and A.L.G. are Investigator and Faculty Scholar of Howard Hughes Medical Institute. S.G. and M.V.K. are recipients of the James Hudson Brown–Alexander Brown Coxe Postdoctoral Fellowships at Yale University.

Author information

Affiliations

Authors

Contributions

S.G. and A.I. planned the project, designed the experiments, interpreted the data and wrote the paper. S.G., M.V.K., T.R. and P.W.W. designed and carried out the experiments. N.A.B. and A.L.G. provided reagents and help with germ-free experiments. T.K., M.v.Z. and A.L.G. provided reagents and feedback.

Corresponding author

Correspondence to Akiko Iwasaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Life Sciences Reporting Summary

Supplementary Table 1

Genes upregulated in vaginal tissue upon neomycin treatment. Significant genes are in red.

Supplementary Table 2

Extended table of P values.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopinath, S., Kim, M.V., Rakib, T. et al. Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 3, 611–621 (2018). https://doi.org/10.1038/s41564-018-0138-2

Download citation

Further reading