Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanosecond solvation dynamics in a polymer electrolyte for lithium batteries

Abstract

Solvation dynamics critically affect charge transport. Spectroscopic experiments and computer simulations show that these dynamics in aqueous systems occur on a picosecond timescale. In the case of organic electrolytes, however, conflicting values ranging from 1 to several 100 picoseconds have been reported. We resolve this conflict by studying mixtures of an organic polymer and a lithium salt. Lithium ions coordinate with multiple polymer chains, resulting in temporary crosslinks. Relaxation of these crosslinks, detected by quasielastic neutron scattering, are directly related to solvation dynamics. Simulations reveal a broad spectrum of relaxation times. The average timescale for solvation dynamics in both experiment and simulation is one nanosecond. We present the direct measurement of ultraslow dynamics of solvation shell break-up in an electrolyte.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PPM polymer and Li+ solvation structure.
Fig. 2: Structure factors obtained by QENS.
Fig. 3: Segmental dynamics determined by QENS and simulation.
Fig. 4: Solvation dynamics in the presence of temporary Li+ crosslinks.

Similar content being viewed by others

Data availability

The Supplementary Information contains details of QENS and simulation. Further data are available from the corresponding authors upon request. Source data are presented in this paper.

References

  1. Wolynes, P. G. Dynamics of electrolyte solutions. Annu. Rev. Phys. Chem. 31, 345–376 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Ratner, M. A., Johansson, P. & Shriver, D. F. Polymer electrolytes: ionic transport mechanisms and relaxation coupling. MRS Bull. 25, 31–37 (2000).

    Article  CAS  Google Scholar 

  3. Marcus, R. A. On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  ADS  CAS  Google Scholar 

  4. Bakker, H. Structural dynamics of aqueous salt solutions. Chem. Rev. 108, 1456–1473 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Bagchi, B. & Jana, B. Solvation dynamics in dipolar liquids. Chem. Soc. Rev. 39, 1936–1954 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993).

    Article  CAS  Google Scholar 

  7. He, F. & Richert, R. Solvation dynamics in viscous polymer solution: propylene carbonate confined by poly(methylmethacrylate). Phys. Rev. B 74, 014201 (2006).

    Article  ADS  Google Scholar 

  8. Zhang, X.-X., Liang, M., Ernsting, N. P. & Maroncelli, M. Complete solvation response of coumarin 153 in ionic liquids. J. Phys. Chem. B 117, 4291–4304 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Amotz, D. Hydration-shell vibrational spectroscopy. J. Am. Chem. Soc. 141, 10569–10580 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Sacco, A. Structure and dynamics of electrolyte solutions. A NMR relaxation approach. Chem. Soc. Rev. 23, 129–136 (1994).

    Article  CAS  Google Scholar 

  11. Pasquarello, A. et al. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science 291, 856–859 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Markovich, G., Perera, L., Berkowitz, M. L. & Cheshnovsky, O. The solvation of Cl, Br, and I in acetonitrile clusters: photoelectron spectroscopy and molecular dynamics simulations. J. Chem. Phys. 105, 2675–2685 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Kuzmin, A., Obst, S. & Purans, J. X-ray absorption spectroscopy and molecular dynamics studies of hydration in aqueous solutions. J. Phys. Condens. Matter 9, 10065 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Laage, D. & Hynes, J. T. Reorientional dynamics of water molecules in anionic hydration shells. Proc. Natl Acad. Sci. USA 104, 11167–11172 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jimenez, R., Fleming, G. R., Kumar, P. & Maroncelli, M. Femtosecond solvation dynamics of water. Nature 369, 471–473 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Kropman, M. & Bakker, H. Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Rey, R. & Hynes, J. T. Solvation dynamics in water. 4. On the initial regime of solvation relaxation. J. Phys. Chem. B 124, 7668–7681 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lewis, N. H. C., Dereka, B., Zhang, Y., Maginn, E. J. & Tokmakoff, A. From networked to isolated: observing water hydrogen bonds in concentrated electrolytes with two-dimensional infrared spectroscopy. J. Phys. Chem. B 126, 5305–5319 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kacenauskaite, L., Van Wyck, S. J., Moncada Cohen, M. & Fayer, M. D. Water-in-salt: fast dynamics, structure, thermodynamics, and bulk properties. J. Phys. Chem. B 128, 291–302 (2024).

  20. Lee, K.-K. et al. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nat. Commun. 8, 14658 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Liang, C., Kwak, K. & Cho, M. Revealing the solvation structure and dynamics of carbonate electrolytes in lithium-ion batteries by two-dimensional infrared spectrum modeling. J. Phys. Chem. Lett. 8, 5779–5784 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fulfer, K. D. & Kuroda, D. G. Solvation structure and dynamics of the lithium ion in organic carbonate-based electrolytes: a time-dependent infrared spectroscopy study. J. Phys. Chem. C 120, 24011–24022 (2016).

    Article  CAS  Google Scholar 

  23. Fulfer, K. D. & Kuroda, D. G. Ion speciation of lithium hexafluorophosphate in dimethyl carbonate solutions: an infrared spectroscopy study. Phys. Chem. Chem. Phys. 20, 22710–22718 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Rushing, J. C., Leonik, F. M. & Kuroda, D. G. Effect of solvation shell structure and composition on ion pair formation: the case study of LiTDI in organic carbonates. J. Phys. Chem. C 123, 25102–25112 (2019).

    Article  CAS  Google Scholar 

  25. Chen, X., Fulfer, K. D., Woodard, K. T. & Kuroda, D. G. Structure and dynamics of the lithium-ion solvation shell in ureas. J. Phys. Chem. B 123, 9889–9898 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Lim, J. et al. Two-dimensional infrared spectroscopy and molecular dynamics simulation studies of nonaqueous lithium ion battery electrolytes. J. Phys. Chem. B 123, 6651–6663 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Galle Kankanamge, S. R. & Kuroda, D. G. Molecular structure, chemical exchange, and conductivity mechanism of high concentration LiTFSI electrolytes. J. Phys. Chem. B 124, 1965–1977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fulfer, K. D., Galle Kankanamge, S. R., Chen, X., Woodard, K. T. & Kuroda, D. G. Elucidating the mechanism behind the infrared spectral features and dynamics observed in the carbonyl stretch region of organic carbonates interacting with lithium ions. J. Chem. Phys. 154, 234504 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Dereka, B. et al. Exchange-mediated transport in battery electrolytes: ultrafast or ultraslow? J. Am. Chem. Soc. 144, 8591–8604 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Ganesh, P., Jiang, D.-E. & Kent, P. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. J. Phys. Chem. B 115, 3085–3090 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X. & Kuroda, D. G. An ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: a comparison between linear and cyclic carbonates. J. Chem. Phys. 150, 184501 (2019).

    Article  ADS  PubMed  Google Scholar 

  32. Siegel, D. J., Nazar, L., Chiang, Y.-M., Fang, C. & Balsara, N. P. Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends Chem. 3, 807–818 (2021).

    Article  CAS  Google Scholar 

  33. Yu, X. et al. A practical polymer electrolyte for lithium and sodium batteries: poly(pentyl malonate). ACS Energy Lett. 7, 3791–3797 (2022).

    Article  CAS  Google Scholar 

  34. Leibler, L., Rubinstein, M. & Colby, R. H. Dynamics of reversible networks. Macromolecules 24, 4701–4707 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Rubinstein, M. & Semenov, A. N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386–1397 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Kumar, S. K. & Douglas, J. F. Gelation in physically associating polymer solutions. Phys. Rev. Lett. 87, 188301 (2001).

    Article  ADS  Google Scholar 

  37. Suzuki, S., Uneyama, T., Inoue, T. & Watanabe, H. Nonlinear rheology of telechelic associative polymer networks: shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution. Macromolecules 45, 888–898 (2012).

    Article  ADS  CAS  Google Scholar 

  38. Rapp, P. B., Omar, A. K., Silverman, B. R., Wang, Z.-G. & Tirrell, D. A. Mechanisms of diffusion in associative polymer networks: evidence for chain hopping. J. Am. Chem. Soc. 140, 14185–14194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sinha, K. & Maranas, J. K. Segmental dynamics and ion association in PEO-based single ion conductors. Macromolecules 44, 5381–5391 (2011).

    Article  ADS  CAS  Google Scholar 

  40. Mongcopa, K. I. S. et al. Relationship between segmental dynamics measured by quasi-elastic neutron scattering and conductivity in polymer electrolytes. ACS Macro Lett. 7, 504–508 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Rouse, P. E. Jr A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953).

    Article  ADS  CAS  Google Scholar 

  42. Doi, M. & Edwards S.F. The Theory of Polymer Dynamics (Clarendon Press, 1986).

  43. Choo, Y., Halat, D. M., Villaluenga, I., Timachova, K. & Balsara, N. P. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 103, 101220 (2020).

    Article  CAS  Google Scholar 

  44. Mamontov, E. & Herwig, K. W. A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum. 82, 085109 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article  ADS  CAS  Google Scholar 

  46. Rubinstein, M. & Semenov, A. N. Dynamics of entangled solutions of associating polymers. Macromolecules 34, 1058–1068 (2001).

    Article  ADS  CAS  Google Scholar 

  47. Börner, H. et al. Neutron Data Booklet (Institut Laue-Langevin, 2003).

  48. Speight, J. Lange’s Handbook of Chemistry (McGraw-Hill Education, 2005).

  49. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Fang, C., Yu, X., Chakraborty, S., Balsara, N. P. & Wang, R. Molecular origin of high cation transference in mixtures of poly(pentyl malonate) and lithium salt. ACS Macro Lett. 12, 612–618 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Office of Basic Energy Science, under contract no. DE-AC02-06CH11357. This research used resources at the Spallation Neutron Source, a US Department of Energy, Office of Science User Facility operated by Oak Ridge National Laboratory. The computations were performed at the Lawrencium cluster at Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived by N.P.B. and R.W.; N.J.S. designed and conducted the major experiments. C.F. performed the simulation study and all theoretical analysis. N.J.S., N.C.O. and E.M. performed the QENS measurements. X.Y. synthesized the PPM polymer. J.L. prepared the PPM/LiTFSI samples. H.W. guided the analysis of experimental data. The manuscript was written by C.F., N.J.S., R.W. and N.P.B. All authors reviewed the manuscript and approved the final version. The two first authors, N.J.S. and C.F., contributed equally to this work.

Corresponding authors

Correspondence to Rui Wang or Nitash P. Balsara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Bogdan Dereka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Table 1 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N.J., Fang, C., Osti, N.C. et al. Nanosecond solvation dynamics in a polymer electrolyte for lithium batteries. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01834-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01834-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing