Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimizing hierarchical membrane/catalyst systems for oxidative coupling of methane using additive manufacturing

Abstract

The advantage of a membrane/catalyst system in the oxidative coupling of methane compared with conventional reactive systems is that by introducing oxygen into the catalytic sites through a membrane, the parasitic gas-phase reactions of O2(g)—responsible for lowering product selectivity—can be avoided. The design and fabrication of membrane/catalyst systems has, however, been hampered by low volumetric chemical conversion rates, high capital cost and difficulties in co-designing membrane and catalyst properties to optimize the performance. Here we solve these issues by developing a dual-layer additive manufacturing process, based on phase inversion, to design, fabricate and optimize a hollow-fibre membrane/catalyst system for the oxidative coupling of methane. We demonstrate the approach through a case study using BaCe0.8Gd0.2O3–δ as the basis of both catalyst and separation layers. We show that by using the manufacturing approach, we can co-design the membrane thickness and catalyst surface area so that the flux of oxygen transport through the membrane and methane activation rates in the catalyst layer match each other. We demonstrate that this ‘rate matching’ is critical for maximizing the performance, with the membrane/catalyst system substantially overperforming conventional reactor designs under identical conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchical membrane/catalyst synthesis approach using additive manufacturing.
Fig. 2: Characterization of BCG AMCHFMs.
Fig. 3: OCM performance of symmetric and AMCHFM BCG membrane/catalyst systems.
Fig. 4: Kinetic studies of rate-determining steps during OCM in membrane/catalyst systems.
Fig. 5: Optimized OCM performance of BCG AMCHFM system.

Similar content being viewed by others

Data availability

All the relevant data generated during this study are available either in the main text or Supplementary Information. Data are also available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Horn, R. & Schlögl, R. Methane activation by heterogeneous catalysis. Catal. Lett. 145, 23–39 (2015).

    CAS  Google Scholar 

  2. McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 340–342 (2012).

    Google Scholar 

  3. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    CAS  Google Scholar 

  4. Olivos-Suarez, A. I. et al. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal. 6, 2965–2981 (2016).

    CAS  Google Scholar 

  5. Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011).

    CAS  Google Scholar 

  6. Gambo, Y., Jalil, A. A., Triwahyono, S. & Abdulrasheed, A. A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. J. Ind. Eng. Chem. 59, 218–229 (2018).

    CAS  Google Scholar 

  7. Farrell, B. L., Igenegbai, V. O. & Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).

    CAS  Google Scholar 

  8. Keller, G. E. & Bhasin, M. M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 73, 9–19 (1982).

    CAS  Google Scholar 

  9. Spivey, J. J. & Hutchings, G. Catalytic aromatization of methane. Chem. Soc. Rev. 43, 792–803 (2014).

    CAS  Google Scholar 

  10. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    CAS  Google Scholar 

  11. Wang, D. J., Rosynek, M. P. & Lunsford, J. H. Oxidative coupling of methane over oxide-supported sodium-manganese catalysts. J. Catal. 155, 390–402 (1995).

    CAS  Google Scholar 

  12. Arndt, S. et al. Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal. A 425–426, 53–61 (2012).

    Google Scholar 

  13. Ito, T., Wang, J., Lin, C. H. & Lunsford, J. H. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 107, 5062–5068 (1985).

    CAS  Google Scholar 

  14. Schucker, R. C., Derrickson, K., Ali, A. & Caton, N. The effect of strontium content on the activity and selectivity of Sr-doped La2O3 catalysts in oxidative coupling of methane. Appl. Catal. A 607, 117827 (2020).

  15. Borchert, H. & Baerns, M. The effect of oxygen-anion conductivity of metal–oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane. J. Catal. 168, 315–320 (1997).

    CAS  Google Scholar 

  16. Zhao, M., Ke, S., Wu, H., Xia, W. & Wan, H. Flower-like Sr-La2O3 microspheres with hierarchically porous structures for oxidative coupling of methane. Ind. Eng. Chem. Res. 58, 22847–22856 (2019).

    CAS  Google Scholar 

  17. Kumar, G., Lau, S. L. J., Krcha, M. D. & Janik, M. J. Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal. 6, 1812–1821 (2016).

    CAS  Google Scholar 

  18. Kuo, J. C. W., Kresge, C. T. & Palermo, R. E. Evaluation of direct methane conversion to higher hydrocarbons and oxygenates. Catal. Today 4, 463–470 (1989).

    CAS  Google Scholar 

  19. Luo, L. et al. Gas-phase reaction network of Li/MgO-catalyzed oxidative coupling of methane and oxidative dehydrogenation of ethane. ACS Catal. 9, 2514–2520 (2019).

    CAS  Google Scholar 

  20. Fleischer, V. et al. Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. J. Catal. 360, 102–117 (2018).

    CAS  Google Scholar 

  21. Cheng, Z. et al. C2 selectivity enhancement in chemical looping oxidative coupling of methane over a Mg–Mn composite oxygen carrier by Li-doping-induced oxygen vacancies. ACS Energy Lett. 3, 1730–1736 (2018).

    CAS  Google Scholar 

  22. Cruellas, A., Melchiori, T., Gallucci, F. & van Sint. Annaland, M. Advanced reactor concepts for oxidative coupling of methane. Catal. Rev. 59, 234–294 (2017).

    CAS  Google Scholar 

  23. Tan, X. & Li, K. Oxidative coupling of methane in a perovskite hollow-fiber membrane reactor. Ind. Eng. Chem. Res. 45, 142–149 (2006).

    CAS  Google Scholar 

  24. ten Elshof, J. E., Bouwmeester, H. J. M. & Verweij, H. Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Appl. Catal. A 130, 195–212 (1995).

    Google Scholar 

  25. Czuprat, O., Schiestel, T., Voss, H. & Caro, J. Oxidative coupling of methane in a BCFZ perovskite hollow fiber membrane reactor. Ind. Eng. Chem. Res. 49, 10230–10236 (2010).

    CAS  Google Scholar 

  26. Othman, N. H., Wu, Z. & Li, K. An oxygen permeable membrane microreactor with an in-situ deposited Bi1.5Y0.3Sm0.2O3−δ catalyst for oxidative coupling of methane. J. Membr. Sci. 488, 182–193 (2015).

    CAS  Google Scholar 

  27. Lu, Y. Oxygen-permeable dense membrane reactor for the oxidative coupling of methane. J. Membr. Sci. 170, 27–34 (2000).

    CAS  Google Scholar 

  28. Wang, H., Cong, Y. & Yang, W. Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors. Catal. Today 104, 160–167 (2005).

    CAS  Google Scholar 

  29. Dimitrakopoulos, G., Koo, B., Yildiz, B. & Ghoniem, A. F. Highly durable C2 hydrocarbon production via the oxidative coupling of methane using a BaFe0.9Zr0.1O3−δ mixed ionic and electronic conducting membrane and La2O3 catalyst. ACS Catal. 11, 3638–3661 (2021).

    CAS  Google Scholar 

  30. Arndt, S. et al. A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. Catal. Rev. 53, 424–514 (2011).

    CAS  Google Scholar 

  31. Vamvakeros, A. et al. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane. Chem. Commun. 51, 12752–12755 (2015).

    CAS  Google Scholar 

  32. Igenegbai, V. O., Meyer, R. J. & Linic, S. In search of membrane-catalyst materials for oxidative coupling of methane: performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping. Appl. Catal. B 230, 29–35 (2018).

    CAS  Google Scholar 

  33. Igenegbai, V. O., Almallahi, R., Meyer, R. J. & Linic, S. Oxidative coupling of methane over hybrid membrane/catalyst active centers: chemical requirements for prolonged lifetime. ACS Energy Lett. 4, 1465–1470 (2019).

  34. Ormerod, R. M. Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003).

    CAS  Google Scholar 

  35. Lin, Y. S. Inorganic membranes for process intensification: challenges and perspective. Ind. Eng. Chem. Res. 58, 5787–5796 (2019).

    CAS  Google Scholar 

  36. Cruellas, A. et al. Oxidative coupling of methane in membrane reactors; a techno-economic assessment. Processes 8, 274 (2020).

    CAS  Google Scholar 

  37. Song, J. et al. Catalyst-modified perovskite hollow fiber membrane for oxidative coupling of methane. Chin. J. Chem. Eng. 41, 412–419 (2022).

    CAS  Google Scholar 

  38. Xu, S. J. & Thomson, W. J. Perovskite-type oxide membranes for the oxidative coupling of methane. AlChE J. 43, 2731–2740 (1997).

    CAS  Google Scholar 

  39. Wu, Z., Wang, B. & Li, K. A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion. J. Membr. Sci. 352, 63–70 (2010).

    CAS  Google Scholar 

  40. de Jong, J., Benes, N. E., Koops, G. H. & Wessling, M. Towards single step production of multi-layer inorganic hollow fibers. J. Membr. Sci. 239, 265–269 (2004).

    Google Scholar 

  41. Balakotaiah, V., Sun, Z., Gu, T. & West, D. H. Scaling relations for autothermal operation of catalytic reactors. Ind. Eng. Chem. Res. 60, 6565–6582 (2021)

  42. Taniguchi, N., Hatoh, K., Niikura, J., Gamo, T. & Iwahara, H. Proton conductive properties of gadolinium-doped barium cerates at high temperatures. Solid State Ion. 53–56, 998–1003 (1992).

    Google Scholar 

  43. Tsang, W. & Hampson, R. F. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data 15, 1087–1279 (1986).

    CAS  Google Scholar 

  44. Zhu, X., Liu, H., Cong, Y. & Yang, W. Permeation model and experimental investigation of mixed conducting membranes. AlChE J. 58, 1744–1754 (2012).

    CAS  Google Scholar 

  45. Haag, S., van Veen, A. C. & Mirodatos, C. Influence of oxygen supply rates on performances of catalytic membrane reactors: application to the oxidative coupling of methane. Catal. Today 127, 157–164 (2007).

    CAS  Google Scholar 

  46. van Hassel, B. A., ten Elshof, J. E. & Bouwmeester, H. J. M. Oxygen permeation flux through La1–ySryFeO3 limited by carbon monoxide oxidation rate. Appl. Catal. A 119, 279–291 (1994).

    Google Scholar 

  47. Stansch, Z., Mleczko, L. & Baerns, M. Comprehensive kinetics of oxidative coupling of methane over the La2O3/CaO catalyst. Ind. Eng. Chem. Res. 36, 2568–2579 (1997).

    CAS  Google Scholar 

  48. Beck, B. et al. Oxidative coupling of methane—a complex surface/gas phase mechanism with strong impact on the reaction engineering. Catal. Today 228, 212–218 (2014).

    CAS  Google Scholar 

  49. Vamvakeros, A. et al. Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catal. Today 364, 242–255 (2021).

    CAS  Google Scholar 

  50. Vamvakeros, A. et al. Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction. J. Catal. 386, 39–52 (2020).

    CAS  Google Scholar 

  51. Tan, X., Liu, Y. & Li, K. Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique. Ind. Eng. Chem. Res. 44, 61–66 (2005).

    CAS  Google Scholar 

  52. Hufenus, R. et al. Melt-spun polymer fibers with liquid core exhibit enhanced mechanical damping. Mater. Des. 110, 685–692 (2016).

    CAS  Google Scholar 

  53. Li, T. et al. X-ray tomography-assisted study of a phase inversion process in ceramic hollow fiber systems—towards practical structural design. J. Membr. Sci. 528, 24–33 (2017).

    CAS  Google Scholar 

  54. Li, S. et al. Feasibility and mechanism of lithium oxide as sintering aid for Ce0.8Sm0.2Oδ electrolyte. J. Power Sources 205, 57–62 (2012).

    CAS  Google Scholar 

  55. van Hassel, B. A. et al. Oxygen permeation modelling of perovskites. Solid State Ion. 66, 295–305 (1993).

    Google Scholar 

  56. Schiestel, T. et al. Hollow fibre perovskite membranes for oxygen separation. J. Membr. Sci. 258, 1–4 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. J. Meyer, S. F. Liu and J. R. Johnson at ExxonMobil for helpful discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences (DE-SC0021008). We acknowledge financial support from the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization. R.A. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant DGE 1256260.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the plan of the project and experiments. J.W. and A.H.M. designed the additive manufacturing equipment setup. J.W. fabricated the membranes and performed the measurements. J.W., R.A., V.O.I. and A.H.M. performed the membrane/catalyst characterization and characterization data analysis. All authors analysed the data. J.W. and S.L. wrote the paper. All authors edited the paper. S.L. supervised the project.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Andrew Beale, Reinhard Schomäcker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1 and 2 and Discussion.

Supplementary Data 1

Source data for Supplementary Fig. 3.

Supplementary Data 2

Source data for Supplementary Fig. 4.

Supplementary Data 3

Source data for Supplementary Fig. 5.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2 (XRD data).

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wortman, J., Igenegbai, V.O., Almallahi, R. et al. Optimizing hierarchical membrane/catalyst systems for oxidative coupling of methane using additive manufacturing. Nat. Mater. 22, 1523–1530 (2023). https://doi.org/10.1038/s41563-023-01687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01687-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing