Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multislip-enabled morphing of all-inorganic perovskites

Abstract

All-inorganic lead halide perovskites (CsPbX3, X = Cl, Br or I) are becoming increasingly important for energy conversion and optoelectronics because of their outstanding performance and enhanced environmental stability. Morphing perovskites into specific shapes and geometries without damaging their intrinsic functional properties is attractive for designing devices and manufacturing. However, inorganic semiconductors are often intrinsically brittle at room temperature, except for some recently reported layered or van der Waals semiconductors. Here, by in situ compression, we demonstrate that single-crystal CsPbX3 micropillars can be substantially morphed into distinct shapes (cubic, L and Z shapes, rectangular arches and so on) without localized cleavage or cracks. Such exceptional plasticity is enabled by successive slips of partial dislocations on multiple \(\{110\}\langle 1\bar{1}0 \rangle\) systems, as evidenced by atomic-resolution transmission electron microscopy and first-principles and atomistic simulations. The optoelectronic performance and bandgap of the devices were unchanged. Thus, our results suggest that CsPbX3 perovskites, as potential deformable inorganic semiconductors, may have profound implications for the manufacture of advanced optoelectronics and energy systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Material characterization, in situ experiment and morphing of CsPbX3 single crystals into various geometries.
Fig. 2: Morphing a CsPbBr3 single crystal through successive multislips.
Fig. 3: Deformation mechanism and the origin of the exceptional plasticity of CsPbX3 perovskites.
Fig. 4: Application of the morphed CsPbX3 crystals to construct patterned photodetector devices and optoelectronic performance characterization.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    CAS  Google Scholar 

  2. Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).

    CAS  Google Scholar 

  3. Chen, H. et al. Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 3, 22–35 (2021).

    CAS  Google Scholar 

  4. Hertzberg, R. W., Vinci, R. P. & Hertzberg, J. L. Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, 2020).

  5. Zhang, H. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2, e1501382 (2016).

    Google Scholar 

  6. Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).

    CAS  Google Scholar 

  7. Wei, B. et al. Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett. 12, 4595–4599 (2012).

    CAS  Google Scholar 

  8. Li, X. et al. High elasticity of CsPbBr3 perovskite nanowires for flexible electronics. Nano Res. 14, 4033–4037 (2021).

    Google Scholar 

  9. Chen, M. et al. Achieving micron-scale plasticity and theoretical strength in silicon. Nat. Commun. 11, 2681 (2020).

    CAS  Google Scholar 

  10. Zou, Y. & Spolenak, R. Size-dependent plasticity in micron- and submicron-sized ionic crystals. Philos. Mag. Lett. 93, 431–438 (2013).

    CAS  Google Scholar 

  11. Fujikane, M., Nagao, S., Chrobak, D., Yokogawa, T. & Nowak, R. Room-temperature plasticity of a nanosized GaN crystal. Nano Lett. 21, 6425–6431 (2021).

    CAS  Google Scholar 

  12. Mathews, N. G., Saxena, A. K., Kirchlechner, C., Dehm, G. & Jaya, B. N. Effect of size and domain orientation on strength of barium titanate. Scr. Mater. 182, 68–73 (2020).

    CAS  Google Scholar 

  13. Liu, Y. et al. Giant room temperature compression and bending in ferroelectric oxide pillars. Nat. Commun. 13, 335 (2022).

    CAS  Google Scholar 

  14. Yang, K. H., Ho, N. J. & Lu, H. Y. Plastic deformation of \(\langle001\rangle\) single‐crystal SrTiO3 by compression at room temperature. J. Am. Ceram. Soc. 94, 3104–3111 (2011).

  15. Stich, S. et al. Room-temperature dislocation plasticity in SrTiO3 tuned by defect chemistry. J. Am. Ceram. Soc. 105, 1318–1329 (2022).

    CAS  Google Scholar 

  16. Li, Y. et al. Theoretical insights into the Peierls plasticity in SrTiO3 ceramics via dislocation remodelling. Nat. Commun. 13, 6925 (2022).

    CAS  Google Scholar 

  17. Gumbsch, P., Taeri-Baghbadrani, S., Brunner, D., Sigle, W. & Rühle, M. Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys. Rev. Lett. 87, 085505 (2001).

    CAS  Google Scholar 

  18. Oshima, Y., Nakamura, A. & Matsunaga, K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science 360, 772–774 (2018).

    CAS  Google Scholar 

  19. Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    CAS  Google Scholar 

  20. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    CAS  Google Scholar 

  21. Wang, H. et al. Orientation-dependent large plasticity of single-crystalline gallium selenide. Cell Rep. Phys. Sci. 3, 100816 (2022).

    CAS  Google Scholar 

  22. Zhang, J., Hodes, G., Jin, Z. & Liu, S. All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew. Chem. Int. Ed. 58, 15596–15618 (2019).

    CAS  Google Scholar 

  23. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Google Scholar 

  24. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    CAS  Google Scholar 

  25. Meng, Y. et al. Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano 13, 6060–6070 (2019).

    CAS  Google Scholar 

  26. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    CAS  Google Scholar 

  27. Kilaas, R. Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 190, 45–51 (1998).

    Google Scholar 

  28. Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    CAS  Google Scholar 

  29. Roknuzzaman, M., Ostrikov, K., Wang, H., Du, A. & Tesfamichael, T. Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7, 14025 (2017).

    Google Scholar 

  30. Wang, Q., Wang, J., Li, J., Zhang, Z. & Mao, S. X. Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires. Sci. Adv. 4, eaas8850 (2018).

    Google Scholar 

  31. Hirel, P., Marton, P., Mrovec, M. & Elsässer, C. Theoretical investigation of {110} generalized stacking faults and their relation to dislocation behavior in perovskite oxides. Acta Mater. 58, 6072–6079 (2010).

    CAS  Google Scholar 

  32. Zhao, S., Stocks, G. M. & Zhang, Y. Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Mater. 134, 334–345 (2017).

    CAS  Google Scholar 

  33. Wu, Z. & Curtin, W. A. The origins of high hardening and low ductility in magnesium. Nature 526, 62–67 (2015).

    CAS  Google Scholar 

  34. Nakamura, A. et al. First-principles calculations on slip system activation in the rock salt structure: electronic origin of ductility in silver chloride. Philos. Mag. 97, 1281–1310 (2017).

    CAS  Google Scholar 

  35. Caicedo-Dávila, S. et al. Spatial phase distributions in solution-based and evaporated Cs–Pb–Br thin films. J. Phys. Chem. C 123, 17666–17677 (2019).

    Google Scholar 

  36. Zhou, Y., Sternlicht, H. & Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 3, 641–661 (2019).

    CAS  Google Scholar 

  37. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    CAS  Google Scholar 

  38. Wang, W. et al. Mixed-dimensional anti-ambipolar phototransistors based on 1D GaAsSb/2D MoS2 heterojunctions. ACS Nano 16, 11036–11048 (2022).

    CAS  Google Scholar 

  39. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  40. Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

    CAS  Google Scholar 

  41. Mattoni, A., Filippetti, A. & Caddeo, C. Modeling hybrid perovskites by molecular dynamics. J. Phys. Condens. Matter 29, 043001 (2016).

    Google Scholar 

  42. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grant Council (RGC) under Grant Nos. RFS2021-1S05 (Y.L.), 11200421 (S.Z.) and CityU11306520 (J.C.H.), the City University of Hong Kong under Grant No. 9610461 (Y.L.) and the National Natural Science Foundation of China/RGC Joint Research Scheme under Grant No. N_HKU159/22 (Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and X.L. conceived the research. Y.L., S.Z., F.-R.C. and J.C.H. supervised the research. X.L. performed the experiments. Y.M. synthesized the samples and investigated the optoelectronic devices. W.L. fabricated the FIB samples and performed part of the analyses. S.Z. and J.Z. performed the simulations and calculations. C.D., H.W., S.-W.H. and R.F. performed part of the analysis. X.L., Y.M., W.L., F.-R.C., S.Z., J.C.H. and Y.L. analysed the data and wrote the initial manuscript. All authors contributed to the final manuscript and approved the submission.

Corresponding authors

Correspondence to Fu-Rong Chen, Shijun Zhao, Johnny C. Ho or Yang Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Karsten Durst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Figs. 1–15, Tables 1–2, Video captions 1 and 2 and refs. 1–11.

Supplementary Video 1

Morphing multiple CsPbX3 (X = Cl, Br or I) single-crystal pillars into various distinct geometries. Played at 40× speed (Fig. 1f–i) and 10× speed (Fig. 1j,k).

Supplementary Video 2

The multislip-enabled morphing of a CsPbBr3 single-crystal pillar (Fig. 2a–h), played at 20× speed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Meng, Y., Li, W. et al. Multislip-enabled morphing of all-inorganic perovskites. Nat. Mater. 22, 1175–1181 (2023). https://doi.org/10.1038/s41563-023-01631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01631-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing