Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule photoelectron tunnelling spectroscopy

Abstract

Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO–LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-molecule conductance and photocurrent measurements.
Fig. 2: Resonant transport of photoelectron in single-molecule junctions.
Fig. 3: Bias voltage dependence of photoelectron tunnelling spectroscopy.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are provided with this paper. Source data are provided with this paper.

Code availability

The data analysis of conductance measurements was performed using our open-source code XME analysis, which is available at https://github.com/Pilab-XMU/XMe_DataAnalysis. The computation details are available from the corresponding authors upon request.

References

  1. Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

    CAS  Google Scholar 

  2. Tang, C. et al. Reversible switching between destructive and constructive quantum interference using atomically precise chemical gating of single-molecule junctions. J. Am. Chem. Soc. 143, 9385–9392 (2021).

    CAS  Google Scholar 

  3. Greenwald, J. E. et al. Highly nonlinear transport across single-molecule junctions via destructive quantum interference. Nat. Nanotechnol. 16, 313–317 (2021).

    CAS  Google Scholar 

  4. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    CAS  Google Scholar 

  5. Capozzi, B. et al. Mapping the transmission functions of single-molecule junctions. Nano Lett. 16, 3949–3954 (2016).

    CAS  Google Scholar 

  6. Beebe, J. M., Kim, B., Gadzuk, J. W., Daniel Frisbie, C. & Kushmerick, J. G. Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006).

    Google Scholar 

  7. Bâldea, I. Interpretation of stochastic events in single-molecule measurements of conductance and transition voltage spectroscopy. J. Am. Chem. Soc. 134, 7958–7962 (2012).

    Google Scholar 

  8. Guo, S., Zhou, G. & Tao, N. Single molecule conductance, thermopower, and transition voltage. Nano Lett. 13, 4326–4332 (2013).

    CAS  Google Scholar 

  9. Reddy, P., Jang, S.-Y., Segalman Rachel, A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    CAS  Google Scholar 

  10. Bai, J., Li, X., Zhu, Z., Zheng, Y. & Hong, W. Single-molecule electrochemical transistors. Adv. Mater. 33, e2005883 (2021).

    Google Scholar 

  11. Ke, G., Duan, C., Huang, F. & Guo, X. Electrical and spin switches in single-molecule junctions. InfoMat. 2, 92–112 (2020).

    CAS  Google Scholar 

  12. Ting, T.-C. et al. Energy-level alignment for single-molecule conductance of extended metal-atom chains. Angew. Chem. 127, 15960–15964 (2015).

    Google Scholar 

  13. Liu, H., Zhang, H., Zhao, Y., Liu, J. & Hong, W. Interface engineering for single-molecule devices. Trends Chem. 5, 367–379 (2023).

    Google Scholar 

  14. Zang, Y. P. et al. Resonant transport in single diketopyrrolopyrrole junctions. J. Am. Chem. Soc. 140, 13167–13170 (2018).

    CAS  Google Scholar 

  15. Li, S. S. et al. Transition between nonresonant and resonant charge transport in molecular junctions. Nano Lett. 21, 8340–8347 (2021).

    CAS  Google Scholar 

  16. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).

    CAS  Google Scholar 

  17. Gutzler, R., Garg, M., Ast, C. R., Kuhnke, K. & Kern, K. Light–matter interaction at atomic scales. Nat. Rev. Phys. 3, 441–453 (2021).

    Google Scholar 

  18. Du, S., Yoshida, K., Zhang, Y., Hamada, I. & Hirakawa, K. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nat. Photonics 12, 608–612 (2018).

    CAS  Google Scholar 

  19. Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022).

    CAS  Google Scholar 

  20. Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020).

    CAS  Google Scholar 

  21. Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photonics 10, 762–765 (2016).

    CAS  Google Scholar 

  22. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–525 (2018).

    CAS  Google Scholar 

  23. Hu, Y. et al. Single dynamic covalent bond tailored responsive molecular junctions. Angew. Chem. Int. Ed. 60, 20872–20878 (2021).

    CAS  Google Scholar 

  24. Tang, C. et al. Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions. Angew. Chem. Int. Ed. 58, 10601–10605 (2019).

    CAS  Google Scholar 

  25. Hong, W. J. et al. Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012).

    CAS  Google Scholar 

  26. Tan, Z. et al. The control of intramolecular through-bond and through-space coupling in single-molecule junctions. CCS Chem. 3, 929–937 (2021).

  27. Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy. Nat. Photonics 4, 869–874 (2010).

    CAS  Google Scholar 

  28. Zhan, C. et al. Single-molecule plasmonic optical trapping. Matter 3, 1350–1360 (2020).

    Google Scholar 

  29. Kos, D., Assumpcao, D. R., Guo, C. Y. & Baumberg, J. J. Quantum tunneling induced optical rectification and plasmon-enhanced photocurrent in nanocavity molecular junctions. ACS Nano 15, 14535–14543 (2021).

    CAS  Google Scholar 

  30. Schröder, B. et al. Controlling photocurrent channels in scanning tunneling microscopy. New J. Phys. 22, 033047 (2020).

    Google Scholar 

  31. Lindstrom, C. D. & Zhu, X. Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006).

    CAS  Google Scholar 

  32. Li, Z. et al. Understanding the conductance dispersion of single-molecule junctions. J. Phys. Chem. C 125, 3406–3414 (2021).

    CAS  Google Scholar 

  33. Quan, R., Pitler, C. S., Ratner, M. A. & Reuter, M. G. Quantitative interpretations of break junction conductance histograms in molecular electron transport. ACS Nano 9, 7704–7713 (2015).

    CAS  Google Scholar 

  34. Adak, O., Korytár, R., Joe, A. Y., Evers, F. & Venkataraman, L. Impact of electrode density of states on transport through pyridine-linked single molecule junctions. Nano Lett. 15, 3716–3722 (2015).

    CAS  Google Scholar 

  35. Parker, C. R. et al. A comprehensive study of extended tetrathiafulvalene cruciform molecules for molecular electronics: synthesis and electrical transport measurements. J. Am. Chem. Soc. 136, 16497–16507 (2014).

    CAS  Google Scholar 

  36. Li, Y. et al. Interplay of bias-driven charging and the vibrational Stark effect in molecular junctions. Nano Lett. 16, 1104–1109 (2016).

    CAS  Google Scholar 

  37. Huang, X. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 5, eaaw3072 (2019).

    CAS  Google Scholar 

  38. Abbasi, M., Evans, C. I., Chen, L. & Natelson, D. Single metal photodetectors using plasmonically-active asymmetric gold nanostructures. ACS Nano 14, 17535–17542 (2020).

    CAS  Google Scholar 

  39. Zolotavin, P., Evans, C. & Natelson, D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps. J. Phys. Chem. Lett. 8, 1739–1744 (2017).

    CAS  Google Scholar 

  40. Zhang, Y. C. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).

    CAS  Google Scholar 

  41. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    CAS  Google Scholar 

  42. Brinks, D. et al. Ultrafast dynamics of single molecules. Chem. Soc. Rev. 43, 2476–2491 (2014).

    CAS  Google Scholar 

  43. de Nijs, B. et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 994 (2017).

    Google Scholar 

  44. Garg, M. et al. Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nat. Photonics 16, 196–202 (2022).

    CAS  Google Scholar 

  45. Katayama, I., Kimura, K., Imada, H., Kim, Y. & Takeda, J. Investigation of ultrafast excited-state dynamics at the nanoscale with terahertz field-induced electron tunneling and photon emission. J. Appl. Phys. 133, 110903 (2023).

    CAS  Google Scholar 

  46. Kaneko, S. et al. Site-selection in single-molecule junction for highly reproducible molecular electronics. J. Am. Chem. Soc. 138, 1294–1300 (2016).

    CAS  Google Scholar 

  47. Tachizaki, T., Hayashi, K., Kanemitsu, Y. & Hirori, H. On the progress of ultrafast time-resolved THz scanning tunneling microscopy. APL Mater. 9, 060903 (2021).

    CAS  Google Scholar 

  48. Smidstrup, S. et al. First-principles Green’s-function method for surface calculations: a pseudopotential localized basis set approach. Phys. Rev. B 96, 195309 (2017).

    Google Scholar 

  49. Smidstrup, S. et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019).

    Google Scholar 

  50. Li, L. et al. Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nat. Chem. 14, 1061–1067 (2022).

    CAS  Google Scholar 

  51. Garner, M. H. et al. Comprehensive suppression of single-molecule conductance using destructive sigma-interference. Nature 558, 415–419 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (numbers 22250003 (W.H.), 21722305 (W.H.), 22173075 (J.L.) and 21933012 (J.L.)) and the Fundamental Research Funds for the Central Universities (numbers 20720220020 (J.L.), 20720220072 (J.L.), 20720200068 (J.L.), 20720190002 (W.H.)). We thank K.-Q. Lin and J. Yi at Xiamen University for helpful discussions and Z. Luo at Xiamen University for providing the continuous-wave laser. We also acknowledge the support from the ultra-precision laboratory at IKKEM for offering the experimental platforms.

Author information

Authors and Affiliations

Authors

Contributions

W.H. supervised the project. W.H., Y.Y. and L.C. originally conceived the concept and designed the experiments. L.C., H.L., Z.Y., J.L. and J.S. designed and constructed the set-up. H.L., L.C. and H.Z. performed the experiments. C.F. and P.Z. performed the thermopower measurements. H.L. and L.C. conceived and developed the data analysis method. W.X. synthesized the molecules. J.Y. carried out the DFT calculations. H.L. and L.C. prepared the manuscript with input from other authors.

Corresponding author

Correspondence to Wenjing Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jun Takeda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of contents, Supplementary Discussion and Figs. 1–27.

Supplementary Data 1

The atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, L., Zhang, H. et al. Single-molecule photoelectron tunnelling spectroscopy. Nat. Mater. 22, 1007–1012 (2023). https://doi.org/10.1038/s41563-023-01591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01591-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing