Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface

Abstract

When an electrode contacts an electrolyte, an interfacial electric field forms. This interfacial field can polarize the electrode’s surface and nearby molecules, but its effect can be countered by an applied potential. Quantifying the value of this countering potential (‘potential of zero charge’ (pzc)) is, however, not straightforward. Here we present an optical method for determining the pzc at an electrochemical interface. Our approach uses phase-sensitive second-harmonic generation to determine the electrochemical potential where the interfacial electric field vanishes at an electrode–electrolyte interface with Pt–water as a model experiment. Our method reveals that the pzc of the Pt–water interface is 0.23 ± 0.08 V versus standard hydrogen electrode (SHE) and is pH independent from pH 1 to pH 13. First-principles calculations with a hybrid explicit–implicit solvent model predict the pzc of the Pt(111)–water interface to be 0.23 V versus SHE and reveal how the interfacial water structure rearranges as the electrode potential is moved above and below the pzc. We further show that pzc is sensitive to surface modification; deposition of Ni on Pt shifts the interfacial pzc in the cathodic direction by ~360 mV. Our work demonstrates a materials-agnostic approach for quantifying the interfacial electrical field and water orientation at an electrochemical interface without requiring probe molecules and confirms the long-held view that the interfacial electric field is more intense during hydrogen electrocatalysis in alkaline than in acid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the proposed optical method for pzc determination.
Fig. 2: The potential-dependent SHG intensity and phase from the Pt surface in pH 1 solution.
Fig. 3: SHG study of the Pt surface in different pHs.
Fig. 4: Top and side views of (3 × 3) water adlayers on Pt(111) embedded in an implicit electrolyte and optimized at different surface charge densities (q).
Fig. 5: Potential-dependent SHG intensity and phase of a Pt electrode before and after Ni modification.

Similar content being viewed by others

Data availability

The data for Figs. 2, 3 and 5 are provided in Source data. Any other data are available from the corresponding authors upon reasonable request.

References

  1. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  2. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  3. Xu, A., Govindarajan, N., Kastlunger, G., Vijay, S. & Chan, K. Theories for electrolyte effects in CO2 electroreduction. Acc. Chem. Res. 55, 495–503 (2022).

    Article  CAS  Google Scholar 

  4. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  CAS  Google Scholar 

  5. Kelly, S. R., Kirk, C., Chan, K. & Nørskov, J. K. Electric field effects in oxygen reduction kinetics: rationalizing pH dependence at the Pt(111), Au(111), and Au(100) electrodes. J. Phys. Chem. C 124, 14581–14591 (2020).

    Article  CAS  Google Scholar 

  6. Lou, S. et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 11, 5700 (2020).

    Article  CAS  Google Scholar 

  7. Rebollar, L. et al. ‘Beyond adsorption’ descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    Article  CAS  Google Scholar 

  8. Boettcher, S. W. et al. Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021).

    Article  CAS  Google Scholar 

  9. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley and Sons, 2000).

  10. Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711–715 (2020).

    Article  CAS  Google Scholar 

  11. Cuesta, A. Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: the potential of zero charge of Pt(111). Surf. Sci. 572, 11–22 (2004).

    Article  CAS  Google Scholar 

  12. Rizo, R., Sitta, E., Herrero, E., Climent, V. & Feliu, J. M. Towards the understanding of the interfacial pH scale at Pt(111) electrodes. Electrochim. Acta 162, 138–145 (2015).

    Article  CAS  Google Scholar 

  13. Weaver, M. J. Potentials of zero charge for platinum(111)−aqueous interfaces: a combined assessment from in-situ and ultrahigh-vacuum measurements. Langmuir 14, 3932–3936 (1998).

    Article  CAS  Google Scholar 

  14. Sebastián, P., Martínez-Hincapié, R., Climent, V. & Feliu, J. M. Study of the Pt(111) | electrolyte interface in the region close to neutral pH solutions by the laser induced temperature jump technique. Electrochim. Acta 228, 667–676 (2017).

    Article  Google Scholar 

  15. Sarabia, F. J., Sebastián, P., Climent, V. & Feliu, J. M. New insights into the Pt(hkl)-alkaline solution interphases from the laser induced temperature jump method. J. Electroanal. Chem. 872, 114068 (2020).

    Article  CAS  Google Scholar 

  16. Climent, V., Attard, G. A. & Feliu, J. M. Potential of zero charge of platinum stepped surfaces: a combined approach of CO charge displacement and N2O reduction. J. Electroanal. Chem. 532, 67–74 (2002).

    Article  CAS  Google Scholar 

  17. Martínez-Hincapié, R., Climent, V. & Feliu, J. M. Peroxodisulfate reduction as a probe to interfacial charge. Electrochem. Commun. 88, 43–46 (2018).

    Article  Google Scholar 

  18. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    Article  CAS  Google Scholar 

  19. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

    Article  CAS  Google Scholar 

  20. Corn, R. M. & Higgins, D. A. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994).

    Article  CAS  Google Scholar 

  21. Eisenthal, K. B. Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem. Rev. 96, 1343–1360 (1996).

    Article  CAS  Google Scholar 

  22. Chang, H. et al. Direct measurement of charge reversal on lipid bilayers using heterodyne-detected second harmonic generation spectroscopy. J. Phys. Chem. B 124, 641–649 (2020).

    Article  CAS  Google Scholar 

  23. Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. & Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016).

    Article  CAS  Google Scholar 

  24. Sarabia, F. J., Sebastián-Pascual, P., Koper, M. T. M., Climent, V. & Feliu, J. M. Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media. ACS Appl. Mater. Interfaces 11, 613–623 (2019).

    Article  CAS  Google Scholar 

  25. Xu, P., Huang, A. & Suntivich, J. Phase-sensitive second-harmonic generation of electrochemical interfaces. J. Phys. Chem. Lett. 11, 8216–8221 (2020).

    Article  CAS  Google Scholar 

  26. Campbell, D. J., Lynch, M. L. & Corn, R. M. Second harmonic generation studies of anionic chemisorption at polycrystalline platinum electrodes. Langmuir 6, 1656–1664 (1990).

    Article  CAS  Google Scholar 

  27. Fredlein, R. A., Damjanovic, A. & Bockris, J. O. Differential surface tension measurements at thin solid metal electrodes. Surf. Sci. 25, 261–264 (1971).

    Article  CAS  Google Scholar 

  28. Trasatti, S. & Lust, E. Modern Aspects of Electrochemistry (Kluwer Academic Publishers, 2005).

  29. Tripkovic, V., Björketun, M. E., Skúlason, E. & Rossmeisl, J. Standard hydrogen electrode and potential of zero charge in density functional calculations. Phys. Rev. B 84, 115452 (2011).

    Article  Google Scholar 

  30. Li, C.-Y. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article  CAS  Google Scholar 

  31. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  Google Scholar 

  32. Ogasawara, H. et al. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002).

    Article  CAS  Google Scholar 

  33. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  34. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  Google Scholar 

  35. Jinnouchi, R. & Anderson, A. B. Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified Poisson-Boltzmann theory. Phys. Rev. B 77, 245417 (2008).

    Article  Google Scholar 

  36. Sakong, S., Forster-Tonigold, K. & Groß, A. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J. Chem. Phys. 144, 194701 (2016).

    Article  Google Scholar 

  37. Bramley, G., Nguyen, M.-T., Glezakou, V.-A., Rousseau, R. & Skylaris, C.-K. Reconciling work functions and adsorption enthalpies for implicit solvent models: a Pt (111)/water interface case study. J. Chem. Theory Comput. 16, 2703–2715 (2020).

    Article  CAS  Google Scholar 

  38. Le, J., Iannuzzi, M., Cuesta, A. & Cheng, J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics. Phys. Rev. Lett. 119, 016801 (2017).

    Article  Google Scholar 

  39. Pajkossy, T. & Kolb, D. M. Double layer capacitance of Pt(111) single crystal electrodes. Electrochim. Acta 46, 3063–3071 (2001).

    Article  CAS  Google Scholar 

  40. Rossmeisl, J., Nørskov, J. K., Taylor, C. D., Janik, M. J. & Neurock, M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B 110, 21833–21839 (2006).

    Article  CAS  Google Scholar 

  41. Noguchi, H., Okada, T. & Uosaki, K. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface. Electrochim. Acta 53, 6841–6844 (2008).

    Article  CAS  Google Scholar 

  42. Osawa, M., Tsushima, M., Mogami, H., Samjeské, G. & Yamakata, A. Structure of water at the electrified platinum−water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).

    Article  CAS  Google Scholar 

  43. Giles, S. A. et al. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 367, 328–331 (2018).

    Article  CAS  Google Scholar 

  44. Paffett, M. T., Campbell, C. T. & Taylor, T. N. Adsorption and growth modes of Bi on Pt(111). J. Chem. Phys. 85, 6176 (1998).

    Article  Google Scholar 

  45. García-Aráez, N., Climent, V. & Feliu, J. M. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. J. Am. Chem. Soc. 130, 3824–3833 (2008).

    Article  Google Scholar 

  46. Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC Press, 2014).

  47. Gileadi, E., Argade, S. D. & Bockris, J. O. The potential of zero charge of platinum and its pH dependence. J. Phys. Chem. 70, 2044–2046 (1966).

    Article  CAS  Google Scholar 

  48. Bockris, J. O. M., Argade, S. D. & Gileadi, E. The determination of the potential of zero charge on solid metals. Electrochim. Acta 14, 1259–1283 (1969).

    Article  CAS  Google Scholar 

  49. Zheng, J., Nash, J., Xu, B. & Yan, Y. Perspective—towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J. Electrochem. Soc. 165, H27 (2018).

    Article  CAS  Google Scholar 

  50. Hall, D. B., Underhill, P. & Torkelson, J. M. Spin coating of thin and ultrathin polymer films. Polym. Eng. Sci. 38, 2039–2045 (1998).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  53. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  55. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  56. Filhol, J.-S., Neurock, M., Filhol, J. & Neurock, M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew. Chem. Int. Ed. 45, 402–406 (2006).

    Article  CAS  Google Scholar 

  57. Gauthier, J. A. et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 9, 920–931 (2019).

    Article  CAS  Google Scholar 

  58. McNaught, A. D. & Wilkinson, A. The IUPAC Compendium of Chemical Terminology (International Union of Pure and Applied Chemistry, 2019).

  59. Trasatti, S. The absolute electrode potential: an explanatory note (recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Alkaline Based Energy Solutions, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under award #DE-SC0019445. J.S. acknowledges the Sloan Research Fellowship. This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the Materials Research Science and Engineering Centers program from the National Science Foundation (DMR-1719875). The computational work was performed in part using supercomputing resources from the National Energy Research Scientific Computing Center (BES-ERCAP0019973), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory and operated under contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

P.X. developed the phase-sensitive second-harmonic generation technique and performed the spectroscopic and electrochemical measurements and data processing. A.D.v.R. and R.S. designed and performed the theoretical modelling work. M.M. and J.S. supervised the project. All authors discussed the results and contributed to writing the manuscript. P.X. and A.D.v.R. contributed equally.

Corresponding authors

Correspondence to Manos Mavrikakis or Jin Suntivich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xihan Chen, Jan Rossmeisl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Discussion and Tables 1–6.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., von Rueden, A.D., Schimmenti, R. et al. Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nat. Mater. 22, 503–510 (2023). https://doi.org/10.1038/s41563-023-01474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01474-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing