Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis

Subjects

Abstract

Lithium-rich cathodes are promising energy storage materials due to their high energy densities. However, voltage hysteresis, which is generally associated with transition metal migration, limits their energy efficiency and implementation in practical devices. Here we reveal that voltage hysteresis is related to the collective migration of metal ions, and that isolating the migration events from each other by creating partial disorder can create high-capacity reversible cathode materials, even when migrating transition metal ions are present. We demonstrate this on a layered Li-rich chromium manganese oxide that in its fully ordered state displays a substantial voltage hysteresis (>2.5 V) associated with collective transition metal migration into Li layers, but can be made to achieve high capacity (>360 mAh g−1) and energy density (>1,100 Wh kg−1) when the collective migration is perturbed by partial disorder. This study demonstrates that partially cation-disordered cathode materials can accommodate a high level of transition metal migration, which broadens our options for redox couples to those of mobile cations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure characterization of L-LCMO and PD-LCMO.
Fig. 2: Electrochemistry of LCMO samples at room temperature.
Fig. 3: Redox mechanism and structural change in PD-LCMO.
Fig. 4: Redox mechanism and structural change in L-LCMO.
Fig. 5: Cr migration and tetrahedral dumb-bell formation in layered and disordered structures.
Fig. 6: Proposed reaction mechanisms in L-LCMO and PD-LCMO.

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in the published article and its Supplementary Information. Source data are provided with this paper.

References

  1. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  2. Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017).

    Article  CAS  Google Scholar 

  3. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  4. Nayak, P. K. et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018).

    Article  Google Scholar 

  5. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  Google Scholar 

  6. House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    Article  CAS  Google Scholar 

  7. Balasubramanian, M., McBreen, J., Davidson, I. J., Whitfield, P. S. & Kargina, I. In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material. J. Electrochem. Soc. 149, A176–A184 (2002).

    Article  CAS  Google Scholar 

  8. Lyu, Y. et al. Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0–4.8 V. Chem. Mater. 27, 5238–5252 (2015).

    Article  CAS  Google Scholar 

  9. Ammundsen, B. et al. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J. Electrochem. Soc. 149, A431–A436 (2002).

    Article  CAS  Google Scholar 

  10. Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode material. J. Electrochem. Soc. 150, A1044–A1051 (2003).

    Article  CAS  Google Scholar 

  11. Lu, Z. & Dahn, J. R. Structure and electrochemistry of layered Li[CrxLi(1/3−x/3)Mn(2/3−2x/3)]O2. J. Electrochem. Soc. 149, A1454 (2002).

    Article  CAS  Google Scholar 

  12. Zhang, L. & Noguchi, H. Novel layered Li Cr Ti O cathode materials related to the LiCrO2 Li2TiO3 solid solution. J. Electrochem. Soc. 150, A601–A607 (2003).

    Article  CAS  Google Scholar 

  13. Mi, X., Li, H. & Huang, X. Carbon-coated Li1.2Cr0.4Ti0.4O2 cathode material for lithium-ion batteries. Electrochem. Solid State Lett. 9, A324–A327 (2006).

    Article  CAS  Google Scholar 

  14. Zhang, L. & Noguchi, H. Novel layered Li–Cr–Ti–O cathode materials for lithium rechargeable batteries. Electrochem. Commun. 4, 560–564 (2002).

    Article  CAS  Google Scholar 

  15. Mi, X., Li, H. & Huang, X. Electrochemical and structural studies of the carbon-coated Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 (x=0.3, 0.35, 0.4, 0.45). J. Power Sources 174, 867–871 (2007).

    Article  CAS  Google Scholar 

  16. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  Google Scholar 

  17. Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75, 177–189 (2006).

    Article  CAS  Google Scholar 

  18. Shi, T. et al. Shear-assisted formation of cation-disordered rocksalt NaMO2 (M = Fe or Mn). Chem. Mater. 30, 8811–8821 (2018).

    Article  CAS  Google Scholar 

  19. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    Article  CAS  Google Scholar 

  20. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  Google Scholar 

  21. Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    Article  CAS  Google Scholar 

  22. Takeda, N. et al. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2x LiF (0 ≤ x ≤ 2) binary system. J. Power Sources 367, 122–129 (2017).

    Article  CAS  Google Scholar 

  23. Takeda, N., Ikeuchi, I., Natsui, R., Nakura, K. & Yabuuchi, N. Improved electrode performance of lithium-excess molybdenum oxyfluoride: titanium substitution with concentrated electrolyte. ACS Appl. Energy Mater. 2, 1629–1633 (2019).

    Article  CAS  Google Scholar 

  24. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156 LP–1151161 (2018).

    Article  Google Scholar 

  25. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  CAS  Google Scholar 

  26. Davenport, A. J. et al. In situ X‐ray absorption study of chromium valency changes in passive oxides on sputtered AlCr thin films under electrochemical control. J. Electrochem. Soc. 138, 337–338 (1991).

    Article  CAS  Google Scholar 

  27. Manceau, A. & Charlet, L. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J. Colloid Interface Sci. 148, 425–442 (1992).

    Article  CAS  Google Scholar 

  28. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article  CAS  Google Scholar 

  29. Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel phase transition in LixMnO2. Electrochem. Solid State Lett. 4, A78 (2001).

    Article  CAS  Google Scholar 

  30. Bréger, J. et al. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater. 18, 4768–4781 (2006).

    Article  Google Scholar 

  31. Kim, S., Ma, X., Ong, S. P. & Ceder, G. A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).

    Article  CAS  Google Scholar 

  32. Bo, S.-H., Li, X., Toumar, A. J. & Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 28, 1419–1429 (2016).

    Article  CAS  Google Scholar 

  33. Lee, E. et al. Role of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J. Mater. Chem. A 3, 9915–9924 (2015).

    Article  CAS  Google Scholar 

  34. Karan, N. K. et al. Morphology, structure, and electrochemistry of solution-derived LiMn0.5−xCr2xNi0.5−xO2 for lithium-ion cells. J. Electrochem. Soc. 156, A553–A562 (2009).

    Article  CAS  Google Scholar 

  35. Ren, S. et al. Improved voltage and cycling for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv. Sci. 2, 1500128 (2015).

    Article  Google Scholar 

  36. Huang, J. et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat. Energy 6, 706–714 (2021).

    Article  CAS  Google Scholar 

  37. Zheng, X. et al. Reversible Mn/Cr dual redox in cation-disordered Li-excess cathode materials for stable lithium ion batteries. Acta Mater. 212, 116935 (2021).

    Article  CAS  Google Scholar 

  38. Hoshino, S. et al. Reversible three-electron redox reaction of Mo3+/Mo6+ for rechargeable lithium batteries. ACS Energy Lett. 2, 733–738 (2017).

    Article  CAS  Google Scholar 

  39. Nakajima, M. & Yabuuchi, N. Lithium-excess cation-disordered rocksalt-type oxide with nanoscale phase segregation: Li1.25Nb0.25V0.5O2. Chem. Mater. 29, 6927–6935 (2017).

    Article  CAS  Google Scholar 

  40. Chen, R. et al. Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage. Adv. Energy Mater. 5, 1401814 (2015).

    Article  Google Scholar 

  41. Yamada, A., Tanaka, M., Tanaka, K. & Sekai, K. Jahn–Teller instability in spinel Li–Mn–O. J. Power Sources 81–82, 73–78 (1999).

    Article  Google Scholar 

  42. Zuo, C. et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Energy Mater. 10, 2000363 (2020).

    Article  CAS  Google Scholar 

  43. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  44. Ravel, B. & Newville, M. ATHENA and ARTEMIS interactive graphical data analysis using IFEFFIT. Phys. Scr. 2005, 1007 (2005).

    Article  Google Scholar 

  45. Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for building physics models. Phys. Rev. B 87, 35125 (2013).

    Article  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  49. Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

    Article  Google Scholar 

  50. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 36402 (2015).

    Article  Google Scholar 

  51. Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B 93, 45132 (2016).

    Article  Google Scholar 

  52. Kitchaev, D. A. et al. Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes. Energy Environ. Sci. 11, 2159–2171 (2018).

    Article  CAS  Google Scholar 

  53. Lun, Z. et al. Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article  CAS  Google Scholar 

  54. Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium-excess transition metal oxide cathode materials. Adv. Energy Mater. 8, 1701533 (2018).

    Article  Google Scholar 

  55. Ouyang, B. et al. Effect of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Adv. Energy Mater. 10, 1903240 (2020).

    Article  CAS  Google Scholar 

  56. Vinckevičiūtė, J., Radin, M. D., Faenza, N. V., Amatucci, G. G. & Van der Ven, A. Fundamental insights about interlayer cation migration in Li-ion electrodes at high states of charge. J. Mater. Chem. A 7, 11996–12007 (2019).

    Article  Google Scholar 

  57. Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, under the Advanced Battery Materials Research (BMR) Program, of the US Department of Energy (DOE) under contract no. DE-AC02-05CH11231. The XRD and XAS measurements were performed at the Advanced Photon Source at Argonne National Laboratory, which is supported by the US DOE under contract no. DE-AC02-06CH11357. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US DOE Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This work used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE under contract no. DE-AC02-05CH11231. The computational analysis was performed using computational resources sponsored by the DOE’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory, as well as computational resources provided by Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation grant number ACI1053575, and the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science and the US DOE under contract no. DE-AC02-05CH11231. M.B. is supported by the US DOE Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) under contract no. DE-AC05-00OR22725. We thank H. Kim for assistance with the XAS measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and G.C. planned the project. G.C. supervised all aspects of the research. J.H. synthesized, characterized and electrochemically tested the proposed materials. J.H. also collected and analysed the ex situ XRD and XAS data. B.O. performed and analysed the theoretical calculations. Y.Z. and D.-H.K. performed the TEM characterization. L.Y. performed refinement of XRD and neutron diffraction. Z.C. helped with material characterization. Z.L. helped with the synthesis and electrochemistry. G.Z. performed the SEM characterization. M.B. helped with the XAS data collection and analyses. The manuscript was written by J.H. and G.C. and was revised by the other co-authors. All authors contributed to discussions.

Corresponding author

Correspondence to Gerbrand Ceder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–20, Tables 1–5 and references.

Source data

Source Data Fig. 1

XRD data.

Source Data Fig. 2

Electrochemistry data.

Source Data Fig. 3

XAS data of PD-LCMO.

Source Data Fig. 4

XAS data of L-LCMO.

Source Data Fig. 5

Fitted tetrahedral Cr fractions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Ouyang, B., Zhang, Y. et al. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis. Nat. Mater. 22, 353–361 (2023). https://doi.org/10.1038/s41563-022-01467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01467-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing