Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials

Abstract

The lithium-excess manganese oxides are a candidate cathode material for the next generation of Li-ion batteries because of their ability to reversibly intercalate more Li than traditional cathode materials. Although reversible oxidation of lattice oxygen has been proposed as the origin of this anomalous excess capacity, questions about the underlying electrochemical reaction mechanisms remain unresolved. Here, we critically analyse the O2−/O oxygen redox hypothesis and explore alternative explanations for the origin of the anomalous capacity, including the formation of peroxide ions or trapped oxygen molecules and the oxidation of Mn. First-principles calculations motivated by the Li–Mn–O phase diagram show that the electrochemical behaviour of the Li-excess manganese oxides is thermodynamically consistent with the oxidation of Mn from the +4 oxidation state to the +7 oxidation state and the concomitant migration of Mn from octahedral sites to tetrahedral sites. It is shown that the Mn oxidation hypothesis can explain the poorly understood electrochemical behaviour of Li-excess materials, including the activation step, the voltage hysteresis and voltage fade.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the first-charge voltage curves of pure Li2MnO3 and Li2MnO3/LiMO2 composites.
Fig. 2: Theoretical phase diagrams and voltage curves for the Li2O–MnO2–O2 system.
Fig. 3: Hypothesized Li1/2MnO3 structure representing the Li2MnO3 component of the cathode material at the end of the activation plateau.
Fig. 4: Alternative charge mechanisms in Li-excess manganese oxides.

Similar content being viewed by others

Data availability

The analysis presented here can be reproduced with the data provided in the paper, supporting information and cited references. Additional calculation data generated during this study are available upon reasonable request.

References

  1. Lu, Z., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 149, A778–A791 (2002).

    Article  Google Scholar 

  2. Johnson, C. S. et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1−x)LiMn0.5Ni 0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004).

    Article  Google Scholar 

  3. Hong, J., Gwon, H., Jung, S.-K., Ku, K. & Kang, K. Review: Lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 162, A2447–A2467 (2015).

    Article  Google Scholar 

  4. Hy, S. et al. Performance and design considerations for the lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 9, 1931–1954 (2016).

    Article  Google Scholar 

  5. Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).

    Article  Google Scholar 

  6. Wei, Y. J. et al. Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries. Electrochem. Commun. 11, 2008–2011 (2009).

    Article  Google Scholar 

  7. Johnson, C. S., Li, N., Lefief, C., Vaughey, J. T. & Thackeray, M. M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 · (1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095–6106 (2008).

    Article  Google Scholar 

  8. Bettge, M. et al. Voltage fade of layered oxides: its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046–A2055 (2013).

    Article  Google Scholar 

  9. Kalyani, P., Chitra, S., Mohan, T. & Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 80, 103–106 (1999).

    Article  Google Scholar 

  10. Robertson, A. D. & Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15, 1984–1992 (2003).

    Article  Google Scholar 

  11. Yu, D. Y. W., Yanagida, K., Kato, Y. & Nakamura, H. Electrochemical activities in Li2MnO3. J. Electrochem. Soc. 156, A417–A424 (2009).

    Article  Google Scholar 

  12. Park, Y. J. et al. Synthesis and electrochemical characteristics of Li[CoxLi(1/3−x/3)Mn(2/3−2x/3)]O2 compounds. J. Electrochem. Soc. 151, A720–A727 (2004).

    Article  Google Scholar 

  13. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  Google Scholar 

  14. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  Google Scholar 

  15. Yabuuchi, N. et al. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2, 16851–16855 (2014).

    Article  Google Scholar 

  16. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    Article  Google Scholar 

  17. Mortemard de Boisse, B. et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x1/7Mn6/7]O2 (ϒ: Mn vacancy). Adv. Energy Mater. 2, 1800409 (2018).

    Article  Google Scholar 

  18. Bai, X. et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 8, 1802379 (2018).

    Article  Google Scholar 

  19. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  Google Scholar 

  20. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  Google Scholar 

  21. Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    Article  Google Scholar 

  22. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  Google Scholar 

  23. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Article  Google Scholar 

  24. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  Google Scholar 

  25. Seo, D. et al. The electronic origin of the oxygen redox activity in Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  Google Scholar 

  26. Luo, K. et al. Charge-compensation in 3 d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  Google Scholar 

  27. Koga, H. et al. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236, 250–258 (2013).

    Article  Google Scholar 

  28. Koga, H. et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C. 118, 5700–5709 (2014).

    Article  Google Scholar 

  29. Koyama, Y., Tanaka, I., Nagao, M. & Kanno, R. First-principles study on lithium removal from Li2MnO3. J. Power Sources 189, 798–801 (2009).

    Article  Google Scholar 

  30. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  Google Scholar 

  31. Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    Article  Google Scholar 

  32. Kubobuchi, K. et al. Mn L2,3-edge X-ray absorption spectroscopic studies on charge–discharge mechanism of Li2MnO3. Appl. Phys. Lett. 104, 053906 (2014).

    Article  Google Scholar 

  33. Rana, J. et al. Structural changes in Li2MnO3 cathode material for Li-ion batteries. Adv. Energy Mater. 4, 1300998 (2014).

    Article  Google Scholar 

  34. Oishi, M. et al. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources 276, 89–94 (2015).

    Article  Google Scholar 

  35. Tran, N. et al. Mechanisms associated with the ‘plateau’ observed at high voltage for the overlithiated Li1.12Ni0.425Mn 0.425Co0.15)0.88O2 system. Chem. Mater. 20, 4815–4825 (2008).

    Article  Google Scholar 

  36. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006).

    Article  Google Scholar 

  37. Lee, E. & Persson, K. A. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. Adv. Energy Mater. 4, 1400498 (2014).

    Article  Google Scholar 

  38. Malik, R., Abdellahi, A. & Ceder, G. A Critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160, A3179–A3197 (2013).

    Article  Google Scholar 

  39. Rinaldo, S. G. et al. Physical theory of voltage fade in lithium- and manganese-rich transition metal oxides. J. Electrochem. Soc. 162, A897–A904 (2015).

    Article  Google Scholar 

  40. Zhuo, Z. et al. Spectroscopic signature of oxidized oxygen states in peroxides. J. Phys. Chem. Lett. 9, 6378–6384 (2018).

    Article  Google Scholar 

  41. Glans, P. et al. Resonant X-ray emission spectroscopy of molecular oxygen. Phys. Rev. Lett. 76, 2448–2451 (1996).

    Article  Google Scholar 

  42. Lebens-Higgins, Z. W. et al. Distinction between intrinsic and X-ray induced oxidized oxygen states in Li-rich 3 d layered oxides and LiAlO2. J. Phys. Chem. C 123, 13201–13207 (2019).

    Article  Google Scholar 

  43. Bercx, M., Slap, L., Partoens, B. & Lamoen, D. First-principles investigation of the stability of the oxygen framework of Li-rich battery cathodes. MRS Adv. 4, 813–820 (2017).

    Article  Google Scholar 

  44. Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    Article  Google Scholar 

  45. Li, X. et al. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018).

    Article  Google Scholar 

  46. Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

    Article  Google Scholar 

  47. Wolverton, C. & Zunger, A. First-principles prediction of vacancy order–disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606–609 (1998).

    Article  Google Scholar 

  48. Qiu, B., Zhang, M., Xia, Y., Liu, Z. & Meng, Y. S. Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem. Mater. 29, 908–915 (2017).

    Article  Google Scholar 

  49. Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    Article  Google Scholar 

  50. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Article  Google Scholar 

  51. Schirmer, O. F. Smoky coloration of quartz caused by bound small hole polaron optical absorption. Solid State Commun. 18, 1349–1351 (1976).

    Article  Google Scholar 

  52. Griscom, D. L. Self-trapped holes in pure-silica glass: a history of their discovery and characterization and an example of their critical significance to industry. J. Non Cryst. Solids 352, 2601–2617 (2006).

    Article  Google Scholar 

  53. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  Google Scholar 

  54. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  Google Scholar 

  55. Subedi, A., Peil, O. E. & Georges, A. Low-energy description of the metal–insulator transition in the rare-earth nickelates. Phys. Rev. B 91, 075128 (2015).

    Article  Google Scholar 

  56. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article  Google Scholar 

  57. Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

    Article  Google Scholar 

  58. Dai, K. et al. High reversibility of lattice oxygen redox in Na-ion and Li-ion batteries quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    Article  Google Scholar 

  59. Chan, M. K. Y. et al. Structure of lithium peroxide. J. Phys. Chem. Lett. 2, 2483–2486 (2011).

    Article  Google Scholar 

  60. Wang, L., Maxisch, T. & Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007).

    Article  Google Scholar 

  61. Yabuuchi, N., Yoshii, K., Myung, S. T., Nakai, I. & Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011).

    Article  Google Scholar 

  62. Lu, Z. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815–A822 (2002).

    Article  Google Scholar 

  63. Pasero, D., McLaren, V., De Souza, S. & West, A. R. Oxygen nonstoichiometry in Li2MnO3: an alternative explanation for its anomalous electrochemical activity. Chem. Mater. 17, 345–348 (2005).

    Article  Google Scholar 

  64. Kubota, K. et al. Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes. J. Power Sources 216, 249–255 (2012).

    Article  Google Scholar 

  65. Okamoto, Y. Ambivalent effect of oxygen vacancies on Li2MnO3: a first-principles study. J. Electrochem. Soc. 159, A152–A157 (2012).

    Article  Google Scholar 

  66. Armstrong, A. R., Robertson, A. D. & Bruce, P. G. Overcharging manganese oxides: extracting lithium beyond Mn4+. J. Power Sources 146, 275–280 (2005).

    Article  Google Scholar 

  67. Ohzuku, T., Nagayama, M., Tsuji, K. & Ariyoshi, K. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1. J. Mater. Chem. 21, 10179 (2011).

    Article  Google Scholar 

  68. Jain, A. et al. Commentary. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  69. Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li–Fe–P–O2 phase diagram from first principles calculations. Chem. Mater. 77, 1798–1807 (2008).

    Article  Google Scholar 

  70. Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Article  Google Scholar 

  71. Strehle, B. et al. The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017).

    Article  Google Scholar 

  72. Thackeray, M. M., Chan, M. K. Y., Trahey, L., Kirklin, S. & Wolverton, C. Vision for designing high-energy, hybrid Li ion/Li−O2 cells. J. Phys. Chem. Lett. 4, 3607–3611 (2013).

    Article  Google Scholar 

  73. Ruther, R. E., Callender, A. F., Zhou, H., Martha, S. K. & Nanda, J. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes. J. Electrochem. Soc. 162, A98–A102 (2014).

    Article  Google Scholar 

  74. Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1–71 (1997).

    Article  Google Scholar 

  75. Jansen, V. M. & Hoppe, R. Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3. Z. Anorg. Allg. Chem. 397, 279–289 (1973).

    Article  Google Scholar 

  76. Fischer, D., Hoppe, R., Schäfer, W. & Knight, K. S. Koordinationszahl 4 oder 6 für Lithium? Die Kristallstruktur von wasserfreiem Lithiumpermanganat, Li[MnO4]. Z. Anorg. Allg. Chem. 619, 1419–1425 (1993).

    Article  Google Scholar 

  77. Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B 93, 045132 (2016).

    Article  Google Scholar 

  78. Chevrier, V. L., Ong, S. P., Armiento, R., Chan, M. K. Y. & Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 82, 075122 (2010).

    Article  Google Scholar 

  79. Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article  Google Scholar 

  80. Chase, M. W. Jr. NIST-JANAF Thermochemical Tables (American Chemical Society, 1998).

  81. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell Univ. Press, 1960).

  82. Zheng, J. et al. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 160, 2212–2219 (2013).

    Article  Google Scholar 

  83. Yu, H.-C. et al. Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7, 1760–1768 (2014).

    Article  Google Scholar 

  84. Li, V. Von & Hoppe, V. G. M. R. Zum thermischen Verhalten von Li3MnO4 I. 1. Über α‐ und β‐Li3MnO4. 266, 249–256 (1976).

  85. Ammundsen, B. et al. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J. Electrochem. Soc. 149, A431–A436 (2002).

    Article  Google Scholar 

  86. Balasubramanian, M., McBreen, J., Davidson, I. J., Whitfield, P. S. & Kargina, I. In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material. J. Electrochem. Soc. 149, A176–A184 (2002).

    Article  Google Scholar 

  87. Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode material. J. Electrochem. Soc. 150, A1044–A1051 (2003).

    Article  Google Scholar 

  88. Na, Y., Ho, S., Chan, Y. & Bin, S. Characteristics of Li2TiO3–LiCrO2 composite cathode powders prepared by ultrasonic spray pyrolysis. J. Power Sources 244, 336–343 (2013).

    Article  Google Scholar 

  89. Chalmin, E., Farges, F. & Brown, G. E. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contrib. Mineral. Petrol. 157, 111–126 (2009).

    Article  Google Scholar 

  90. Van Schooneveld, M. M. & DeBeer, S. A close look at dose: toward L-edge XAS spectral uniformity, dose quantification and prediction of metal ion photoreduction. J. Electron Spectrosc. 198, 31–56 (2015).

    Article  Google Scholar 

  91. Garvie, L. A. J. & Craven, A. J. High-resolution parallel electron energy-loss spectroscopy of Mn L2, 3-edges in inorganic manganese compounds. Phys. Chem. Miner. 21, 191–206 (1994).

    Article  Google Scholar 

  92. Minasian, S. G. et al. Covalency in metal–oxygen multiple bonds evaluated using oxygen K-edge spectroscopy and electronic structure theory. J. Am. Chem. Soc. 135, 1864–1871 (2013).

    Article  Google Scholar 

  93. Kleiner, K. et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides — a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018).

    Article  Google Scholar 

  94. Kiefer, W. & Bernstein, H. J. Rotating Raman sample technique for colored crystal powders; resonance Raman effect in solid KMnO4. Appl. Spectrosc. 25, 609–613 (1971).

    Article  Google Scholar 

  95. Du, K. et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016).

    Article  Google Scholar 

  96. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M. L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  Google Scholar 

  97. Qiao, Y. et al. Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. Energy Environ. Sci. 11, 299–305 (2018).

    Article  Google Scholar 

  98. Griffith, W. P. Infrared spectra of tetrahedral oxyanions of the transition metals. J. Chem. Soc. A 1467–1468 (1966).

  99. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  100. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  Google Scholar 

  101. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  102. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  103. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  104. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  105. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  Google Scholar 

  106. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  107. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  108. Blöchl, P., Jepsen, O. & Andersen, O. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Article  Google Scholar 

  109. Chernova, N. A. et al. What can we learn about battery materials from their magnetic properties? J. Mater. Chem. 21, 9865–9875 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Piper and Z. Lebens-Higgins for the insightful discussion. This work was supported as part of the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE- SC0012583. The contributions of R.S. were supported as part of the Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0019381. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. Use of the Center for Scientific Computing at UC Santa Barbara supported by the National Science Foundation (NSF) Materials Research Science and Engineering Centers program through NSF DMR 1720256 and NSF CNS 1725797 is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors participated in the analysis of data and preparation of the manuscript. First-principles calculations were performed by M.D.R. and J.V.

Corresponding authors

Correspondence to Maxwell D. Radin or Anton Van der Ven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–2, Supplementary Table 1, Supplementary Discussion and Supplementary refs.

Supplementary Data 1

Hypothesized crystal structure for Li1/2MnO3, in VASP POSCAR format.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radin, M.D., Vinckeviciute, J., Seshadri, R. et al. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat Energy 4, 639–646 (2019). https://doi.org/10.1038/s41560-019-0439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-019-0439-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing