Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations

Abstract

Carbon molecular sieve (CMS) membranes with precise molecular discrimination ability and facile scalability are attractive next-generation membranes for large-scale, energy-efficient gas separations. Here, structurally engineered CMS membranes derived from a tailor-made cross-linkable copolyimide with kinked structure are reported. We demonstrate that combining two features, kinked backbones and cross-linkable backbones, to engineer polyimide precursors while controlling pyrolysis conditions allows the creation of CMS membranes with improved gas separation performance. Our results indicate that the CMS membranes provide a versatile platform for a broad spectrum of challenging gas separations. The gas transport properties of the resulting CMS membranes are interpreted in terms of a model reflecting both molecular sieving Langmuir domains and a disordered continuous phase, thereby providing insight into structure evolution from the cross-linkable polyimide precursor to a final CMS membrane. With this understanding of CMS membrane structure and separation performance, these systems are promising for environmentally friendly gas separations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of cross-linkable copolyimide precursor with kinked structure for CMS membrane.
Fig. 2: Characterizations of CMS membranes.
Fig. 3: Gas transport properties of CMS membranes.
Fig. 4: Comparison and stability of mixed-gas separation performance.

Similar content being viewed by others

Data availability

The data that support the findings in this study are available within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  2. Koros, W. J. & Lively, R. P. Water and beyond: expanding the spectrum of large‐scale energy efficient separation processes. AIChE J. 58, 2624–2633 (2012).

    Article  CAS  Google Scholar 

  3. Lively, R. P. & Sholl, D. S. From water to organics in membrane separations. Nat. Mater. 16, 276–279 (2017).

    Article  CAS  Google Scholar 

  4. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  5. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  6. Lei, L. et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 12, 268 (2021).

    Article  CAS  Google Scholar 

  7. Omidvar, M. et al. Unexpectedly strong size-sieving ability in carbonized polybenzimidazole for membrane H2/CO2 separation. ACS Appl. Mater. Interfaces 11, 47365–47372 (2019).

    Article  CAS  Google Scholar 

  8. Ngamou, P. T., Ivanova, M., Guillon, O. & Meulenberg, W. A. High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents. J. Mater. Chem. A. 7, 7082–7091 (2019).

    Article  CAS  Google Scholar 

  9. Ismail, A. F. & David, L. A review on the latest development of carbon membranes for gas separation. J. Membr. Sci. J. Membr. Sci. 193, 1–18 (2001).

    Article  CAS  Google Scholar 

  10. Vu, D. Q., Koros, W. J. & Miller, S. J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind. Eng. Chem. Res. 41, 367–380 (2002).

    Article  CAS  Google Scholar 

  11. Ma, X., Lin, Y., Wei, X. & Kniep, J. Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE J. 62, 491–499 (2016).

    Article  CAS  Google Scholar 

  12. Rungta, M., Xu, L. & Koros, W. J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon 50, 1488–1502 (2012).

    Article  CAS  Google Scholar 

  13. Koh, D.-Y., McCool, B. A., Deckman, H. W. & Lively, R. P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353, 804–807 (2016).

    Article  CAS  Google Scholar 

  14. Yang, Z. et al. Surpassing Robeson upper limit for CO2/N2 separation with fluorinated carbon molecular sieve membranes. Chem 6, 631–645 (2020).

    Article  CAS  Google Scholar 

  15. Ning, X. & Koros, W. J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon 66, 511–522 (2014).

    Article  CAS  Google Scholar 

  16. Zhang, C. & Koros, W. J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater. 29, 1701631 (2017).

    Article  Google Scholar 

  17. Fu, S., Sanders, E. S., Kulkarni, S. S. & Koros, W. J. Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. J. Membr. Sci. 487, 60–73 (2015).

    Article  CAS  Google Scholar 

  18. Kiyono, M., Williams, P. J. & Koros, W. J. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon 48, 4432–4441 (2010).

    Article  CAS  Google Scholar 

  19. Kiyono, M., Williams, P. J. & Koros, W. J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. J. Membr. Sci. 359, 2–10 (2010).

    Article  CAS  Google Scholar 

  20. Suda, H. & Haraya, K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. J. Phys. Chem. B 101, 3988–3994 (1997).

    Article  CAS  Google Scholar 

  21. Ma, Y. et al. Creation of well‐defined ‘mid‐sized’ micropores in carbon molecular sieve membranes. Angew. Chem. 131, 13393–13399 (2019).

    Article  Google Scholar 

  22. Qiu, W. et al. Hyperaging tuning of a carbon molecular‐sieve hollow fiber membrane with extraordinary gas‐separation performance and stability. Angew. Chem. Int. Ed. 58, 11700–11703 (2019).

    Article  CAS  Google Scholar 

  23. Adams, J. S. et al. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis. Carbon 141, 238–246 (2019).

    Article  CAS  Google Scholar 

  24. Sanyal, O. et al. A self‐consistent model for sorption and transport in polyimide‐derived carbon molecular sieve gas separation. Membr. Angew. Chem. Int. Ed. 59, 20343–20347 (2020).

    Article  CAS  Google Scholar 

  25. Qiu, W., Li, F. S., Fu, S. & Koros, W. J. Isomer‐tailored carbon molecular sieve membranes with high gas separation performance. Chem. Sus. Chem. 13, 5318–5328 (2020).

    Article  CAS  Google Scholar 

  26. Liang, J. et al. Effects on carbon molecular sieve membrane properties for a precursor polyimide with simultaneous flatness and contortion in the repeat unit. Chem. Sus. Chem. 13, 5531–5538 (2020).

    Article  CAS  Google Scholar 

  27. Hu, C.-P. et al. The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor. Carbon 143, 343–351 (2019).

    Article  CAS  Google Scholar 

  28. Qiu, W., Zhang, K., Li, F. S., Zhang, K. & Koros, W. J. Gas separation performance of carbon molecular sieve membranes based on 6FDA‐mPDA/DABA (3:2) polyimide. Chem. Sus. Chem. 7, 1186–1194 (2014).

    Article  CAS  Google Scholar 

  29. Wang, Q., Huang, F., Cornelius, C. J. & Fan, Y. Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations. J. Membr. Sci. 621, 118785 (2021).

    Article  CAS  Google Scholar 

  30. Karunaweera, C., Musselman, I. H., Balkus, K. J. Jr & Ferraris, J. P. Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA. J. Membr. Sci. 581, 430–438 (2019).

    Article  CAS  Google Scholar 

  31. Liu, Z., Liu, Y., Qiu, W. & Koros, W. J. Molecularly engineered 6FDA‐based polyimide membranes for sour natural gas separation. Angew. Chem. Int. Ed. 59, 14877–14883 (2020).

    Article  CAS  Google Scholar 

  32. Xu, L. et al. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci. 423, 314–323 (2012).

    Article  Google Scholar 

  33. Liu, Z., Qiu, W., Quan, W., Liu, Y. & Koros, W. J. Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation. J. Membr. Sci. https://doi.org/10.1016/j.memsci.2021.119474 (2021).

  34. Jenkins, G. M., Jenkins, A. & Kawamura, K. Polymeric Carbons: Carbon Fibre, Glass and Char (Cambridge Univ. Press, 1976).

  35. Swaidan, R., Ghanem, B. & Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015).

    Article  CAS  Google Scholar 

  36. Comesaña-Gándara, B. et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 12, 2733–2740 (2019).

    Article  Google Scholar 

  37. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  38. Burns, R. L. & Koros, W. J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes. J. Membr. Sci. 211, 299–309 (2003).

    Article  CAS  Google Scholar 

  39. Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Membr. Sci. 107, 1–21 (1995).

    Article  CAS  Google Scholar 

  40. Swaidan, R., Ma, X., Litwiller, E. & Pinnau, I. High pressure pure-and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. J. Membr. Sci. 447, 387–394 (2013).

    Article  CAS  Google Scholar 

  41. Kim, S.-J., Lee, P. S., Chang, J.-S., Nam, S.-E. & Park, Y.-I. Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in C3H6/C3H8 separation. Sep. Purif. Technol. 194, 443–450 (2018).

    Article  CAS  Google Scholar 

  42. Kamaruddin, H. D. & Koros, W. J. Some observations about the application of Fick’s first law for membrane separation of multicomponent mixtures. J. Membr. Sci. 135, 147–159 (1997).

    Article  CAS  Google Scholar 

  43. Xu, L. et al. Physical aging in carbon molecular sieve membranes. Carbon 80, 155–166 (2014).

    Article  CAS  Google Scholar 

  44. Wang, Y. et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 3, 69–95 (2018).

    Article  Google Scholar 

  45. Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012).

    Article  CAS  Google Scholar 

  46. Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.J.K. acknowledges the support by the Roberto C. Goizueta Chair fund and the US Department of Energy grant (no. DE‐FG02‐04ER15510), and we acknowledge the Specialty Separations Center at Georgia Institute of Technology for assistance in equipment resource funds.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., W. Qiu and W.J.K. conceived and designed the project. Z.L. prepared the CMS membranes and performed the membrane permeation and sorption tests. Z.L. and W. Qiu synthesized the copolyimide precursors. W. Quan carried out the X-ray diffraction measurement and pore size distribution test by CO2 physisorption. Z.L. conducted the gas diffusion analysis using the dual sorption and transport models. Z.L. W. Qiu and W.J.K. discussed the findings in this paper. Z.L. and W.J.K. drafted the paper, and all authors contributed to revising the paper.

Corresponding author

Correspondence to William J. Koros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–23, Tables 1–24 and References 1–95.

Source data

Source Data Fig. 1

Source Data for NMR data plotted in Fig. 1b, TGA data plotted in Fig. 1c and ATR–FTIR data plotted in Fig. 1d.

Source Data Fig. 2

Source Data for Raman spectra data plotted in Fig. 2d, WAXRD data plotted in Fig. 2e and pore sizes plotted in Fig. 2f.

Source Data Fig. 3

Source Data for pure gas selectivity data plotted in Fig. 3a–c, and solubility/diffusivity data plotted in Fig. 3d–f.

Source Data Fig. 4

Source data for mixed-gas selectivity data plotted in Fig. 4a–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qiu, W., Quan, W. et al. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations. Nat. Mater. 22, 109–116 (2023). https://doi.org/10.1038/s41563-022-01426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01426-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing