Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inter-facet junction effects on particulate photoelectrodes

Abstract

Particulate semiconductor photocatalysts are paramount for many solar energy conversion technologies. In anisotropically shaped photocatalyst particles, the different constituent facets may form inter-facet junctions at their adjoining edges, analogous to lateral two-dimensional (2D) heterojunctions or pseudo-2D junctions made of few-layer 2D materials. Using subfacet-level multimodal functional imaging, we uncover inter-facet junction effects on anisotropically shaped bismuth vanadate (BiVO4) particles and identify the characteristics of near-edge transition zones on the particle surface, which underpin the whole-particle photoelectrochemistry. We further show that chemical doping modulates the widths of such near-edge surface transition zones, consequently altering particles’ performance. Decoupled facet-size scaling laws further translate inter-facet junction effects into quantitative particle-size engineering principles, revealing surprising multiphasic size dependences of whole-particle photoelectrode performance. The imaging tools, the analytical framework and the inter-facet junction concept pave new avenues towards understanding, predicting and engineering (opto)electronic and photoelectrochemical properties of faceted semiconducting materials, with broad implications in energy science and semiconductor technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualizing inter-facet junction effects in anisotropically shaped semiconductor particles.
Fig. 2: Inter-facet junctions govern whole-particle photoelectrochemistry.
Fig. 3: Engineering inter-facet junctions via chemical doping to modulate photoelectrode performance.
Fig. 4: Translating inter-facet junction effects into size engineering principles of shaped particles.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information.

Code availability

MATLAB codes for data analysis and simulations supporting the findings of this study are provided with this paper.

References

  1. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  2. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  Google Scholar 

  3. Wang, Q. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18, 827–832 (2019).

    Article  CAS  Google Scholar 

  4. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  5. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  6. Li, R. G. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432 (2013).

    Article  Google Scholar 

  7. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

  8. Segev, G., Beeman, J. W., Greenblatt, J. B. & Sharp, I. D. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nat. Mater. 17, 1115–1121 (2018).

    Article  CAS  Google Scholar 

  9. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  Google Scholar 

  10. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  CAS  Google Scholar 

  11. Chen, R. et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 3, 655–663 (2018).

    Article  CAS  Google Scholar 

  12. Laskowski, F. A. L. et al. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 19, 69–76 (2020).

    Article  CAS  Google Scholar 

  13. Würfel, U., Cuevas, A. & Würfel, P. Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015).

    Article  Google Scholar 

  14. Würfel, P. & Würfel, U. Physics of Solar Cells: From Basic Principles to Advanced Concepts 2nd updated and expanded edn (Wiley-VCH, 2009).

  15. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  16. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  17. Ling, X. et al. Parallel stitching of 2D materials. Adv. Mater. 28, 2322–2329 (2016).

    Article  CAS  Google Scholar 

  18. Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  CAS  Google Scholar 

  19. Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  CAS  Google Scholar 

  20. Yu, H., Kutana, A. & Yakobson, B. I. Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides. Nano Lett. 16, 5032–5036 (2016).

    Article  CAS  Google Scholar 

  21. Nipane, A., Jayanti, S., Borah, A. & Teherani, J. T. Electrostatics of lateral p-n junctions in atomically thin materials. J. Appl. Phys. 122, 194501 (2017).

    Article  Google Scholar 

  22. Zheng, C. et al. Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 11, 2785–2793 (2017).

    Article  CAS  Google Scholar 

  23. Mariano, R. G. et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 20, 1000–1006 (2021).

    Article  CAS  Google Scholar 

  24. Velmurugan, J., Zhan, D. & Mirkin, M. V. Electrochemistry through glass. Nat. Chem. 2, 498–502 (2010).

    Article  CAS  Google Scholar 

  25. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  26. Tachikawa, T., Yonezawa, T. & Majima, T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano 7, 263–275 (2013).

    Article  CAS  Google Scholar 

  27. Zhang, Y. et al. Unique size-dependent nanocatalysis revealed at the single atomically precise gold cluster level. Proc. Natl Acad. Sci. USA 115, 10588–10593 (2018).

    Article  CAS  Google Scholar 

  28. Ristanovic, Z., Kubarev, A. V., Hofkens, J., Roeffaers, M. B. J. & Weckhuysen, B. M. Single molecule nanospectroscopy visualizes proton-transfer processes within a zeolite crystal. J. Am. Chem. Soc. 138, 13586–13596 (2016).

    Article  CAS  Google Scholar 

  29. Zhou, X. C. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 7, 237–241 (2012).

    Article  CAS  Google Scholar 

  30. Cendula, P. et al. Calculation of the energy band diagram of a photoelectrochemical water splitting cell. J. Phys. Chem. C. 118, 29599–29607 (2014).

    Article  CAS  Google Scholar 

  31. Kim, T. W., Ping, Y., Galli, G. A. & Choi, K.-S. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015).

    Article  CAS  Google Scholar 

  32. Zhao, M. & Xia, Y. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 5, 440–459 (2020).

    Article  CAS  Google Scholar 

  33. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  Google Scholar 

  34. Somorjai, G. A. & Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).

    Article  CAS  Google Scholar 

  35. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  Google Scholar 

  36. Nellist, M. R., Laskowski, F. A. L., Lin, F., Mills, T. J. & Boettcher, S. W. Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733–740 (2016).

    Article  CAS  Google Scholar 

  37. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  38. Bae, S.-H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  CAS  Google Scholar 

  39. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  CAS  Google Scholar 

  40. Yang, X. et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009).

    Article  CAS  Google Scholar 

  41. Wang, J. et al. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290–12297 (2009).

    Article  CAS  Google Scholar 

  42. Ma, Y., Pendlebury, S. R., Reynal, A., Le Formal, F. & Durrant, J. R. Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem. Sci. 5, 2964–2973 (2014).

    Article  CAS  Google Scholar 

  43. Levin, S. et al. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 10, 4426 (2019).

    Article  CAS  Google Scholar 

  44. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  Google Scholar 

  45. Ding, C. et al. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. PCCP 16, 15608–15614 (2014).

    Article  CAS  Google Scholar 

  46. Chen, Y.-S., Manser, J. S. & Kamat, P. V. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J. Am. Chem. Soc. 137, 974–981 (2015).

    Article  CAS  Google Scholar 

  47. Bornoz, P. et al. A bismuth vanadate–cuprous oxide tandem cell for overall solar water splitting. J. Phys. Chem. C. 118, 16959–16966 (2014).

    Article  CAS  Google Scholar 

  48. Park, Y., McDonald, K. J. & Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  CAS  Google Scholar 

  49. Kim, T. W. & Choi, K.-S. Improving stability and photoelectrochemical performance of BiVO4 photoanodes in basic media by adding a ZnFe2O4 layer. J. Phys. Chem. Lett. 7, 447–451 (2016).

    Article  CAS  Google Scholar 

  50. Hermans, Y. et al. Energy-band alignment of BiVO4 from photoelectron spectroscopy of solid-state interfaces. J. Phys. Chem. C. 122, 20861–20870 (2018).

    Article  CAS  Google Scholar 

  51. Lee, D. et al. The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nat. Energy 6, 287–294 (2021).

    Article  CAS  Google Scholar 

  52. Zhao, T. et al. A coating strategy to achieve effective local charge separation for photocatalytic coevolution. Proc. Natl Acad. Sci. USA 118, e2023552118 (2021).

    Article  CAS  Google Scholar 

  53. Wang, Z. et al. Ohmic contacts on silicon carbide: the first monolayer and its electronic effect. Phys. Rev. B 80, 245303 (2009).

    Article  Google Scholar 

  54. Porter, L. M. & Davis, R. F. A critical review of ohmic and rectifying contacts for silicon carbide. Mater. Sci. Eng. B 34, 83–105 (1995).

    Article  Google Scholar 

  55. Hodgson, G. K., Impellizzeri, S. & Scaiano, J. C. Dye synthesis in the Pechmann reaction: catalytic behaviour of samarium oxide nanoparticles studied using single molecule fluorescence microscopy. Chem. Sci. 7, 1314–1321 (2016).

    Article  CAS  Google Scholar 

  56. Chen, P. et al. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014).

    Article  CAS  Google Scholar 

  57. Zhang, Y. W. et al. Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity. Proc. Natl Acad. Sci. USA 112, 8959–8964 (2015).

    Article  CAS  Google Scholar 

  58. Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017).

    Article  CAS  Google Scholar 

  59. Ng, J. D. et al. Single-molecule investigation of initiation dynamics of an organometallic catalyst. J. Am. Chem. Soc. 138, 3876–3883 (2016).

    Article  CAS  Google Scholar 

  60. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  61. Rust, M. J., Bates, M. & Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  62. Mao, X., Liu, C., Hesari, M., Zou, N. & Chen, P. Super-resolution imaging of non-fluorescent reactions via competition. Nat. Chem. 11, 687–694 (2019).

    Article  CAS  Google Scholar 

  63. Chen, T. Y. et al. Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat. Commun. 6, 7445 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Science program, under award DE-SC0004911. It used Cornell Center for Materials Research shared facilities supported by NSF (grant no. DMR-1120296). We thank M. Hesari, N. Zou, G. Chen and W. Jung for discussions on experiment and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

X.M. and P.C. designed research. X.M. synthesized materials, constructed instrument, performed measurements, coded software and analysed data. X.M. and P.C. discussed results and wrote the manuscript.

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Competing interests

X.M. and P.C. has filed a provisional patent (US Provisional Application no. 63/136,703) based on this work. This patent, entitled ‘Materials and methods enabling two-dimensional junctions on three-dimensional particles’, was filed with the US Patent and Trademark Office on 13 January 2021.

Additional information

Peer review information Nature Materials thanks Shannon Boettcher, Patrick Unwin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Discussion and Table 1.

Supplementary Software

MATLAB codes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2022). https://doi.org/10.1038/s41563-021-01161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01161-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing