Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The changing state of porous materials

Abstract

Porous materials contain regions of empty space into which guest molecules can be selectively adsorbed and sometimes chemically transformed. This has made them useful in both industrial and domestic applications, ranging from gas separation, energy storage and ion exchange to heterogeneous catalysis and green chemistry. Porous materials are often ordered (crystalline) solids. Order—or uniformity—is frequently held to be advantageous, or even pivotal, to our ability to engineer useful properties in a rational way. Here we highlight the growing evidence that topological disorder can be useful in creating alternative properties in porous materials. In particular, we highlight here several concepts for the creation of novel porous liquids, rationalize routes to porous glasses and provide perspectives on applications for porous liquids and glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of atomic arrangement in porous materials science.

reproduced with permission from ref. 82, Springer Nature Ltd (PIMs); ref. 11, The American Association for the Advancement of Science (COFs); ref. 74, Springer Nature Ltd (porous liquids); ref. 83, John Wiley and Sons (extended networks); ref. 84, The American Association for the Advancement of Science (MOFs and PCPs); ref. 37, Springer Nature Ltd (liquid MOFs); ref. 26, John Wiley and Sons (functionalized silica spheres); ref. 16, under a Creative Commons license CC BY 4.0 (linked MOPs); ref. 85, Royal Society of Chemistry (aluminosilicate gels); ref. 86, AIP Publishing (microporous carbons); and adapted from ref. 73, Springer Nature Ltd (POCs)

Fig. 2: Updated classification of porous liquids.

adapted with permission from ref. 25, John Wiley and Sons (schematics); ref. 28, John Wiley and Sons (O type 1); ref. 29, Springer Nature Ltd (IO type 1); ref. 30, American Chemical Society (I type 2); ref. 32, Royal Society of Chemistry (O type 2); ref. 87, John Wiley and Sons (IO type 2); ref. 33, American Chemical Society (I type 3); ref. 10, John Wiley and Sons, and ref. 53, under a Creative Commons license CC BY 4.0 (O type 3); ref. 34, under a Creative Commons license CC BY 4.0 (IO type 3); ref. 64, Royal Society of Chemistry (I type 4); ref. 65, John Wiley and Sons (O type 4); ref. 37, Springer Nature Ltd (IO type 4); and reproduced with permission from ref. 26, John Wiley and Sons (I type 1)

Fig. 3: Solid–liquid transformations.

adapted with permission from ref. 88, Springer Nature Ltd (a); and reproduced with permission from ref. 43, under a Creative Commons license CC BY 4.0 (b); ref. 46, The American Association for the Advancement of Science (c); ref. 89, Springer Nature Ltd (d)

Fig. 4: Applications of porous liquids.

adapted with permission from ref. 52, under a Creative Commons license CC BY 4.0 (a); ref. 55, John Wiley and Sons (b); ref. 90, John Wiley and Sons (c)

Similar content being viewed by others

References

  1. Wright, P. A. The Chemistry of Microporous Framework Solids (Royal Society of Chemistry, 2008).

  2. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  3. Čejka, J., Morris, R. E. & Nachtigall, P. Zeolites in Catalysis: Properties and Applications (Catalysis Series Vol. 28, Royal Society of Chemistry, 2017).

  4. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 974–986 (2013).

    Article  CAS  Google Scholar 

  5. Barrer, R. M. Syntheses and reactions of mordenite. J. Chem. Soc. https://doi.org/10.1039/JR9480002158 (1948).

  6. Giannakoudakis, D. A. & Bandosz, T. Detoxification of Chemical Warfare Agents: from WWI to Multifunctional Nanocomposite Approaches (Springer, 2018).

  7. Patrick, W. Silica gel and process of making same. US patent US1,297,724A (1919).

  8. Yanagisawa, T., Shimizu, T. & Kuroda, K. The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn 63, 988–992 (1990).

    Article  CAS  Google Scholar 

  9. Budd, P. M. et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2, 230–231 (2004).

    Article  CAS  Google Scholar 

  10. Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009).

    Article  CAS  Google Scholar 

  11. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  12. Williams, K. A., Boydston, A. J. & Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 36, 729–744 (2007).

    Article  CAS  Google Scholar 

  13. Honicke, I. M. et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780–13783 (2018).

    Article  CAS  Google Scholar 

  14. Cooper, A. I. Porous molecular solids and liquids. ACS Cent. Sci. 3, 544–553 (2017).

    Article  CAS  Google Scholar 

  15. Ahmad, N., Younus, H. A., Chughtai, A. H. & Verpoort, F. Metal–organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 44, 9–25 (2015).

    Article  CAS  Google Scholar 

  16. Carne-Sanchez, A. et al. Self-assembly of metal–organic polyhedra into supramolecular polymers with intrinsic microporosity. Nat. Commun. 9, 2506 (2018).

    Article  CAS  Google Scholar 

  17. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  18. Colon, Y. J. & Snurr, R. Q. High-throughput computational screening of metal–organic frameworks. Chem. Soc. Rev. 43, 5735–5749 (2014).

    Article  CAS  Google Scholar 

  19. Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020).

  20. Abednatanzi, S. et al. Mixed-metal metal–organic frameworks. Chem. Soc. Rev. 48, 2535–2565 (2019).

    Article  CAS  Google Scholar 

  21. Besara, T. et al. Mechanism of the order–disorder phase transition, and glassy behavior in the metal–organic framework [(CH3)2NH2]Zn(HCOO)3. Proc. Natl Acad. Sci. USA 108, 6828–6832 (2011).

    Article  Google Scholar 

  22. Sircar, S. & Golden, T. C. Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000).

    Article  CAS  Google Scholar 

  23. Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S. & Jones, C. W. Direct air capture of CO2 using amine functionalized MIL-101(Cr). ACS Sustain. Chem. Eng. 4, 5761–5768 (2016).

    Article  CAS  Google Scholar 

  24. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  CAS  Google Scholar 

  25. O’Reilly, N., Giri, N. & James, S. L. Porous liquids.Chem. Eur. J. 13, 3020–3025 (2007).

    Article  CAS  Google Scholar 

  26. Zhang, J. S. et al. Porous liquids: a promising class of media for gas separation. Angew. Chem. Int. Ed. 54, 932–936 (2015).

    Article  CAS  Google Scholar 

  27. Melaugh, G., Giri, N., Davidson, C. E., James, S. L. & Del Popolo, M. G. Designing and understanding permanent microporosity in liquids. Phys. Chem. Chem. Phys. 16, 9422–9431 (2014).

    Article  CAS  Google Scholar 

  28. Jie, K. C. et al. Transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy. Angew. Chem. Int. Ed. 59, 2268–2272 (2020).

    Article  CAS  Google Scholar 

  29. Ma, L. et al. Coordination cages as permanently porous ionic liquids. Nat. Chem. 12, 270–275 (2020).

    Article  CAS  Google Scholar 

  30. Akutagawa, T. et al. Nanoscale assemblies of gigantic molecular {Mo-154}-rings: (dimethyldioctadecylammonium)20[Mo154O462H8(H2O)70]. Langmuir 24, 231–238 (2008).

    Article  CAS  Google Scholar 

  31. Pierotti, R. A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76, 717–726 (1976).

    Article  CAS  Google Scholar 

  32. Kearsey, R. J., Alston, B., Briggs, M. E., Greenaway, R. L. & Cooper, A. I. Accelerated robotic discovery of type II porous liquids. Chem. Sci. 10, 9454–9465 (2019).

    Article  CAS  Google Scholar 

  33. Moro, S., Parneix, C., Cabane, B., Sanson, N. & de Lacaillerie, J. B. D. Hydrophobization of silica nanoparticles in water: nanostructure and response to drying stress. Langmuir 33, 4709–4719 (2017).

    Article  CAS  Google Scholar 

  34. Liu, H. et al. A hybrid absorption–adsorption method to efficiently capture carbon. Nat. Commun. 5, 4813 (2014).

    Article  CAS  Google Scholar 

  35. Shan, W. et al. New class of type III porous liquids: a promising platform for rational adjustment of gas sorption behavior. ACS Appl. Mater. Interfaces 10, 32–36 (2018).

    Article  CAS  Google Scholar 

  36. Tian, Y. Q. et al. The silica-like extended polymorphism of cobalt(ii) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. Chem. Eur. J. 9, 5673–5685 (2003).

    Article  CAS  Google Scholar 

  37. Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

    Article  CAS  Google Scholar 

  38. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  CAS  Google Scholar 

  39. Giri, N. et al. Alkylated organic cages: from porous crystals to neat liquids. Chem. Sci. 3, 2153–2157 (2012).

    Article  CAS  Google Scholar 

  40. Hancock, B. C. & Zografi, G. The relationship between the glass-transition temperature and the water-content of amorphous pharmaceutical solids. Pharm. Res. 11, 471–477 (1994).

    Article  CAS  Google Scholar 

  41. Angell, C. A. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2649 (2002).

    Article  CAS  Google Scholar 

  42. Sare, E. J. & Angell, C. A. Glass-forming composition regions and glass transition temperature in nonaqueous electrolyte solutions. J. Solut. Chem. 2, 53–57 (1973).

    Article  CAS  Google Scholar 

  43. Yang, K. et al. Predicting the Young’s modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning. Sci. Rep. 9, 8739 (2019).

    Article  CAS  Google Scholar 

  44. Lasalle, A., Guizard, C., Maire, E., Adrien, J. & Deville, S. Particle redistribution and structural defect development during ice templating. Acta Mater. 60, 4594–4603 (2012).

    Article  CAS  Google Scholar 

  45. Zhang, H. F. et al. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4, 787–793 (2005).

    Article  CAS  Google Scholar 

  46. Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    Article  CAS  Google Scholar 

  47. McMillan, P. F. Polyamorphic transformations in liquids and glasses. J. Mater. Chem. 14, 1506–1512 (2004).

    Article  CAS  Google Scholar 

  48. McMillan, P. F., Greaves, G. N., Wilson, M., Wilding, M. C. & Daisenberger, D. in Liquid Polymorphism (ed. Stanley, H. E.) 309–353 (Advances in Chemical Physics Vol. 152, Wiley, 2013).

  49. Ha, A., Cohen, I., Zhao, X. L., Lee, M. & Kivelson, D. Supercooled liquids and polyamorphism. J. Phys. Chem. 100, 1–4 (1996).

    Article  CAS  Google Scholar 

  50. Sporer, J. The Linde Solinox process: gypsum-free flue-gas desulphurization. Gas Sep. Purif. 6, 133–140 (1992).

    Article  CAS  Google Scholar 

  51. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  52. Greenaway, R. L. et al. Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chem. Sci. 8, 2640–2651 (2017).

    Article  CAS  Google Scholar 

  53. Cahir, J. et al. Type 3 porous liquids based on non-ionic liquid phases—a broad and tailorable platform of selective, fluid gas sorbents. Chem. Sci. 11, 2077–2084 (2020).

    Article  CAS  Google Scholar 

  54. Fu, Y. et al. Ultra-thin enzymatic liquid membrane for CO2 separation and capture. Nat. Commun. 9, 990 (2018).

    Article  CAS  Google Scholar 

  55. Wang, Y. H. et al. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 59, 4365–4369 (2020).

    Article  CAS  Google Scholar 

  56. Whipple, D. T. & Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

    Article  CAS  Google Scholar 

  57. Kunene, T., Atifi, A. & Rosenthal, J. Selective CO2 reduction over Rose’s metal in the presence of an imidazolium ionic liquid electrolyte. ACS Appl. Energy Mater. 3, 4193–4200 (2020).

    Article  CAS  Google Scholar 

  58. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  59. Funasako, Y., Mori, S. & Mochida, T. Reversible transformation between ionic liquids and coordination polymers by application of light and heat. Chem. Commun. 52, 6277–6279 (2016).

    Article  CAS  Google Scholar 

  60. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).

    Article  CAS  Google Scholar 

  61. Evans, J. D., Jelfs, K. E., Day, G. M. & Doonan, C. J. Application of computational methods to the design and characterisation of porous molecular materials. Chem. Soc. Rev. 46, 3286–3301 (2017).

    Article  CAS  Google Scholar 

  62. Greenaway, R. et al. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nat. Commun. 9, 2849 (2018).

    Article  CAS  Google Scholar 

  63. Pulido, A. et al. Functional materials discovery using energy–structure–function maps. Nature 543, 657–664 (2017).

    Article  CAS  Google Scholar 

  64. Eliasova, P. et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 44, 7177–7206 (2015).

    Article  CAS  Google Scholar 

  65. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  66. Ferlat, G. et al. van der Waals forces stabilize low-energy polymorphism in B2O3: implications for the crystallization anomaly. Phys. Rev. Mater. 3, 063603 (2019).

    Article  CAS  Google Scholar 

  67. Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    Article  CAS  Google Scholar 

  68. Tominaka, S. et al. Topochemical conversion of a dense metal–organic framework from a crystalline insulator to an amorphous semiconductor. Chem. Sci. 6, 1465–1473 (2015).

    Article  CAS  Google Scholar 

  69. MacFarlane, D. R. et al. Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014).

    Article  CAS  Google Scholar 

  70. Chen, X., Gao, H., Tang, Z. & Wang, G. Metal–organic framework-based phase change materials for thermal energy storage. Cell Rep. Phys. Sci. 1, 100218 (2020).

    Article  CAS  Google Scholar 

  71. McGillicuddy, R. D., Thapa, S., Wenny, M. B., Gonzalez, M. I. & Mason, J. A. Metal–organic phase-change materials for thermal energy storage. J. Am. Chem. Soc. 142, 19170–19180 (2020).

    Article  CAS  Google Scholar 

  72. Seo, S. et al. Phase-change ionic liquids for postcombustion CO2 capture. Energy Fuels 28, 5968–5977 (2014).

    Article  CAS  Google Scholar 

  73. Tozawa, T. et al. Porous organic cages. Nat. Mater. 8, 973–978 (2009).

    Article  CAS  Google Scholar 

  74. Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    Article  CAS  Google Scholar 

  75. Kinoshita, Y., Matsubara, I., Higuchi, T. & Saito, Y. The crystal structure of bis(adiponitrilo)copper(i) nitrate. Bull. Chem. Soc. Jpn 32, 1221–1226 (1959).

    Article  CAS  Google Scholar 

  76. Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][Cu1Zn11(CN)4] and Cul[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J. Am. Chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  77. Yaghi, O. M., Li, G. M. & Li, H. L. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    Article  CAS  Google Scholar 

  78. Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H. & Kitagawa, S. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4xH2O}n (M=Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 1725–1727 (1997).

    Article  CAS  Google Scholar 

  79. Kistler, S. S. Coherent expanded aerogels and jellies. Nature 127, 741–741 (1931).

    Article  CAS  Google Scholar 

  80. Bergaya, F. & Lagaly, G. Handbook of Clay Science (Elsevier, 2006).

  81. Stoeckli, H. F. Microporous carbons and their characterization—the present state-of-the-art. Carbon 28, 1–6 (1990).

    Article  CAS  Google Scholar 

  82. Song, Q. L. et al. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4813 (2014).

    Article  CAS  Google Scholar 

  83. Izatt, R. M. Macrocyclic and Supramolecular Chemistry (Wiley, 2016).

  84. Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003).

    Article  CAS  Google Scholar 

  85. Comas-Vives, A. Amorphous SiO2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Phys. Chem. Chem. Phys. 18, 7475–7482 (2016).

    Article  CAS  Google Scholar 

  86. Ranganathan, R. et al. Modeling high-temperature diffusion of gases in micro and mesoporous amorphous carbon. J. Chem. Phys. 143, 084701 (2015).

    Article  CAS  Google Scholar 

  87. Deng, Z. et al. Facilitate gas transport through metal–organic polyhedra constructed porous liquid membrane. Small 16, 1907016 (2020).

    Article  CAS  Google Scholar 

  88. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  89. Widmer, R. N. et al. Pressure promoted low-temperature melting of metal–organic frameworks. Nat. Mater. 18, 370–376 (2019).

    Article  CAS  Google Scholar 

  90. Ueda, T., Tominaga, T., Mochida, T., Takahashi, K. & Kimura, S. Photogeneration of microporous amorphous coordination polymers from organometallic ionic liquids. Chem. Eur. J. 24, 9490–9493 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.D.B. acknowledges the Royal Society for a University Research Fellowship (UF150021), the Leverhulme Trust for a Philip Leverhulme Prize and the University of Canterbury Te Whare Wānanga o Waitaha, New Zealand, for a University of Cambridge Visiting Canterbury Fellowship. F.-X.C. acknowledges funding by the Agence Nationale de la Recherche (ANR-18-CE29-0009-01). A.I.C. acknowledges the Leverhulme Trust for funding through the Leverhulme Research Centre for Functional Materials Design.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of the manuscript.

Corresponding authors

Correspondence to Thomas D. Bennett, François-Xavier Coudert, Stuart L. James or Andrew I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Jorge Gascon, Russell Morris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, T.D., Coudert, FX., James, S.L. et al. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021). https://doi.org/10.1038/s41563-021-00957-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00957-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing