Emergence of quantum correlations from interacting fibre-cavity polaritons


Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2,3,4,5,6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7,8,9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Polariton excitation ladder and experimental set-up.
Fig. 2: Anticrossing of the polariton states and lifetimes.
Fig. 3: Quantum-correlated photons with cavity-exciton detuning.
Fig. 4: Polariton–polariton interaction constant.

Data availability

All data presented in this work are available on request from the authors.


  1. 1.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  2. 2.

    Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Baboux, F. et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116, 066402 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Dagvadorj, G. et al. Nonequilibrium phase transition in a two-dimensional driven open quantum system. Phys. Rev. X 5, 041028 (2015).

    Google Scholar 

  6. 6.

    Klembt, S., Stepanov, P., Klein, T., Minguzzi, A. & Richard, M. Thermal decoherence of a nonequilibrium polariton quantum fluid. Phys. Rev. Lett. 120, 035301 (2018).

    Article  Google Scholar 

  7. 7.

    Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  Google Scholar 

  8. 8.

    Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Cuevas, Á. et al. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Sci. Adv. 4, eaao6814 (2018).

    Article  Google Scholar 

  10. 10.

    Savasta, S., Stefano, O. D., Savona, V. & Langbein, W. Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94, 246401 (2005).

    Article  Google Scholar 

  11. 11.

    Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Lang, C. et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Liebisch, T. C., Reinhard, A., Berman, P. R. & Raithel, G. Atom counting statistics in ensembles of interacting Rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005).

    Article  Google Scholar 

  15. 15.

    Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

  16. 16.

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Walker, P. M. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 097403 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Deveaud, B. et al. Excitonic effects in the luminescence of quantum wells. Chem. Phys. 318, 104–117 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  Google Scholar 

  21. 21.

    Reitzenstein, S. et al. AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007).

    Article  Google Scholar 

  22. 22.

    Wood, A., Vidal, X., Muñoz-Matutano, G. & Volz, T. Non-invasive zero delay calibration of Hanbury Brown and Twiss interferometer. Measurement https://doi.org/10.1016/j.measurement.2019.01.079 (2019).

  23. 23.

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

    Article  Google Scholar 

  25. 25.

    Delteil, A. et al. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. https://doi.org/10.1038/s41563-019-0282-y (2019).

  26. 26.

    Casteels, W., Rota, R., Storme, F. & Ciuti, C. Probing photon correlations in the dark sites of geometrically frustrated cavity lattices. Phys. Rev. A 93, 043833 (2016).

    Article  Google Scholar 

  27. 27.

    Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Miller, D. A. B. Are optical transistors the logical next step?. Nat. Photon. 4, 3–5 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2017).

    Article  Google Scholar 

  30. 30.

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    CAS  Article  Google Scholar 

Download references


We thank S. Martin and D. Taylor from the Commonwealth Scientific and Industrial Research Organisation (Lindfield – New South Wales) for their technical support. This work was funded by the Australian Research Council Centre of Excellence for Engineered Quantum Systems (CE110001013 and CE170100009). A.L., J.B., A.A. and M.R. acknowledge support from the French Agence National de la Recherche (contract no. ANR-16-CE30-0021).

Author information




G.M.-M. and A.W. carried out the spectroscopy and photon correlation experiments and analysed the data. M.J., with the help of B.Q.B., implemented the master equation model and contributed to the analysis of the data. G.M.-M., A.W. and M.J. have equally contributed to this research. X.V. built the spectroscopy set-up. A.R. and B.B. built the cavity microscope and designed the laser machining system for making the fibre cavities. A.L., J.B. and A.A. provided the QW sample and discussed the underlying polariton physics. G.N. carried out the finite-elements simulation of the cavity mode. M.R. and T.V. conceived the central idea of the work and related experiments, supervised the experimental work and contributed to discussions. The manuscript was written by G.M.-M., M.J., M.R. and T.V. with varying contributions from all other authors.

Corresponding authors

Correspondence to Guillermo Muñoz-Matutano or Thomas Volz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Supplementary Figures 1–11, Supplementary References 1–14

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Matutano, G., Wood, A., Johnsson, M. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nature Mater 18, 213–218 (2019). https://doi.org/10.1038/s41563-019-0281-z

Download citation

Further reading