Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decomposition of an odorant in olfactory perception and neural representation

Abstract

Molecules—the elementary units of substances—are commonly considered the units of processing in olfactory perception, giving rise to undifferentiated odour objects invariant to environmental variations. By selectively perturbing the processing of chemical substructures with adaptation (‘the psychologist’s microelectrode’) in a series of psychophysical and neuroimaging experiments (458 participants), we show that two perceptually distinct odorants sharing part of their structural features become significantly less discernible following adaptation to a third odorant containing their non-shared structural features, in manners independent of olfactory intensity, valence, quality or general olfactory adaptation. The effect is accompanied by reorganizations of ensemble activity patterns in the posterior piriform cortex that parallel subjective odour quality changes, in addition to substructure-based neural adaptations in the anterior piriform cortex and amygdala. Central representations of odour quality and the perceptual outcome thus embed submolecular structural information and are malleable by recent olfactory encounters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioural assessments of substructure–quality relationship.
Fig. 2: Nostril-specific modulation of odour perception by substructure adaptation.
Fig. 3: Substructure-related neural adaptations.
Fig. 4: Selective reorganization of posterior piriform activity pattern following substructure adaptation.

Similar content being viewed by others

Data availability

All reported data are available at https://doi.org/10.57760/sciencedb.13818. Source data are provided with this paper.

Code availability

All analysis scripts are available at https://doi.org/10.57760/sciencedb.13818.

References

  1. Mozell, M. M. & Jagodowicz, M. Chromatographic separation of odorants by the nose: retention times measured across in vivo olfactory mucosa. Science 181, 1247–1249 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 2584–2589 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amoore, J. E. Stereochemical theory of olfaction. Nature 198, 271–272 (1963).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Del Marmol, J., Yedlin, M. A. & Ruta, V. The structural basis of odorant recognition in insect olfactory receptors. Nature 597, 126–131 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Khan, A. G., Thattai, M. & Bhalla, U. S. Odor representations in the rat olfactory bulb change smoothly with morphing stimuli. Neuron 57, 571–585 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N. & Meister, M. Precision and diversity in an odor map on the olfactory bulb. Nat. Neurosci. 12, 210–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Mori, K. & Sakano, H. How is the olfactory map formed and interpreted in the mammalian brain? Annu. Rev. Neurosci. 34, 467–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, L. et al. Distributed representation of chemical features and tunotopic organization of glomeruli in the mouse olfactory bulb. Proc. Natl Acad. Sci. USA 109, 5481–5486 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barnes, D. C., Hofacer, R. D., Zaman, A. R., Rennaker, R. L. & Wilson, D. A. Olfactory perceptual stability and discrimination. Nat. Neurosci. 11, 1378–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gottfried, J. A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Bekkers, J. M. & Suzuki, N. Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci. 36, 429–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Snitz, K. et al. Predicting odor perceptual similarity from odor structure. PLoS Comput. Biol. 9, e1003184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keller, A. et al. Predicting human olfactory perception from chemical features of odor molecules. Science 355, 820–826 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Licon, C. C. et al. Chemical features mining provides new descriptive structure–odor relationships. PLoS Comput. Biol. 15, e1006945 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wilson, D. A. & Stevenson, R. J. The fundamental role of memory in olfactory perception. Trends Neurosci. 26, 243–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Giessel, A. J. & Datta, S. R. Olfactory maps, circuits and computations. Curr. Opin. Neurobiol. 24, 120–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16, 1830–1839 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Nizampatnam, S., Zhang, L., Chandak, R., Li, J. & Raman, B. Invariant odor recognition with ON-OFF neural ensembles. Proc. Natl Acad. Sci. USA 119, e2023340118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottfried, J. A. Function follows form: ecological constraints on odor codes and olfactory percepts. Curr. Opin. Neurobiol. 19, 422–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frisby, J. P. Seeing: Illusion, Brain and Mind (Oxford Univ. Press, 1979).

  24. Carhart, R. E., Smith, D. H. & Venkataraghavan, R. Atom pairs as molecular features in structure–activity studies: definition and applications. J. Chem. Inf. Comput. Sci. 25, 64–73 (1985).

    Article  CAS  Google Scholar 

  25. Cao, Y., Jiang, T. & Girke, T. A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics 24, i366–i374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dravnieks, A. Odor quality: semantically generated multidimensional profiles are stable. Science 218, 799–801 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Secundo, L. et al. Individual olfactory perception reveals meaningful nonolfactory genetic information. Proc. Natl Acad. Sci. USA 112, 8750–8755 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nara, K., Saraiva, L. R., Ye, X. & Buck, L. B. A large-scale analysis of odor coding in the olfactory epithelium. J. Neurosci. 31, 9179–9191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Powell, T. P., Cowan, W. M. & Raisman, G. The central olfactory connexions. J. Anat. 99, 791–813 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carmichael, S. T., Clugnet, M. C. & Price, J. L. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346, 403–434 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Lascano, A. M., Hummel, T., Lacroix, J. S., Landis, B. N. & Michel, C. M. Spatio-temporal dynamics of olfactory processing in the human brain: an event-related source imaging study. Neuroscience 167, 700–708 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Iannilli, E., Wiens, S., Arshamian, A. & Seo, H. S. A spatiotemporal comparison between olfactory and trigeminal event-related potentials. NeuroImage 77, 254–261 (2013).

    Article  PubMed  Google Scholar 

  33. Gottfried, J. A., Winston, J. S. & Dolan, R. J. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49, 467–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Li, W., Howard, J. D., Parrish, T. B. & Gottfried, J. A. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science 319, 1842–1845 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D. & Gottfried, J. A. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12, 932–938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kadohisa, M. & Wilson, D. A. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc. Natl Acad. Sci. USA 103, 15206–15211 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zelano, C., Mohanty, A. & Gottfried, J. A. Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72, 178–187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turin, L. A spectroscopic mechanism for primary olfactory reception. Chem. Senses 21, 773–791 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Rubin, B. D. & Katz, L. C. Spatial coding of enantiomers in the rat olfactory bulb. Nat. Neurosci. 4, 355–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Chastrette, M. in Olfaction, Taste, and Cognition (eds Rouby, C. et al.) 100–116 (Cambridge Univ. Press, 2002).

  43. Skaggs, E. B. Atomism versus Gestaltism in perception. Psychol. Rev. 47, 347–354 (1940).

    Article  Google Scholar 

  44. Moncrieff, R. W. Olfactory adaptation and odour likeness. J. Physiol. 133, 301–316 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cain, W. S. Odor intensity after self-adaptation and cross-adaptation. Percept. Psychophys. 7, 271–275 (1970).

    Article  Google Scholar 

  46. Cain, W. S. & Polak, E. H. Olfactory adaptation as an aspect of odor similarity. Chem. Senses 17, 481–491 (1992).

    Article  CAS  Google Scholar 

  47. Pierce, J. D. Jr, Zeng, X. N., Aronov, E. V., Preti, G. & Wysocki, C. J. Cross-adaptation of sweaty-smelling 3-methyl-2-hexenoic acid by a structurally-similar, pleasant-smelling odorant. Chem. Senses 20, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Pierce, J. D. Jr, Wysocki, C. J., Aronov, E. V., Webb, J. B. & Boden, R. M. The role of perceptual and structural similarity in cross-adaptation. Chem. Senses 21, 223–237 (1996).

    Article  PubMed  Google Scholar 

  49. Gori, M., Giuliana, L., Sandini, G. & Burr, D. Visual size perception and haptic calibration during development. Dev. Sci. 15, 854–862 (2012).

    Article  PubMed  Google Scholar 

  50. Thompson, R. in International Encyclopedia of the Social and Behavioral Sciences (eds Smelser, N. J. & Baltes, P. B.) 6458–6462 (Pergamon, 2001).

  51. Pellegrino, R., Sinding, C., de Wijk, R. A. & Hummel, T. Habituation and adaptation to odors in humans. Physiol. Behav. 177, 13–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Li, W., Luxenberg, E., Parrish, T. & Gottfried, J. A. Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron 52, 1097–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mori, K., Takahashi, Y. K., Igarashi, K. M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Fournel, A., Ferdenzi, C., Sezille, C., Rouby, C. & Bensafi, M. Multidimensional representation of odors in the human olfactory cortex. Hum. Brain Mapp. 37, 2161–2172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chu, M. W., Li, W. L. & Komiyama, T. Balancing the robustness and efficiency of odor representations during learning. Neuron 92, 174–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kass, M. D., Guang, S. A., Moberly, A. H. & McGann, J. P. Changes in olfactory sensory neuron physiology and olfactory perceptual learning after odorant exposure in adult mice. Chem. Senses 41, 123–133 (2016).

    CAS  PubMed  Google Scholar 

  57. Tsukahara, T. et al. A transcriptional rheostat couples past activity to future sensory responses. Cell 184, 6326–6343 e6332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farkhooi, F., Froese, A., Muller, E., Menzel, R. & Nawrot, M. P. Cellular adaptation facilitates sparse and reliable coding in sensory pathways. PLoS Comput. Biol. 9, e1003251 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Patterson, C. A., Wissig, S. C. & Kohn, A. Adaptation disrupts motion integration in the primate dorsal stream. Neuron 81, 674–686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Verhagen, J. V., Wesson, D. W., Netoff, T. I., White, J. A. & Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat. Neurosci. 10, 631–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kermen, F. et al. Molecular complexity determines the number of olfactory notes and the pleasantness of smells. Sci. Rep. 1, 206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roblin, D. G. & Eccles, R. Normal range for nasal partitioning of airflow determined by nasal spirometry in 100 healthy subjects. Am. J. Rhinol. 17, 179–183 (2003).

    Article  PubMed  Google Scholar 

  63. Mai, J. K., Paxinos, G. & Voss, T. Atlas of the Human Brain 3rd edn (Academic Press, 2008).

  64. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005).

    Article  PubMed  Google Scholar 

  65. Gottfried, J. A. & Zald, D. H. On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res. Brain Res. Rev. 50, 287–304 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Q. Liu and X. Chang for assistance. This work was supported by STI2030-Major Projects 2021ZD0204200 (W.Z.); the Chinese Academy of Sciences grant nos. JCTD-2021-06 (W.Z.), 2021091 (Z.Z.) and YSBR-068 (Z.Z.); and the National Natural Science Foundation of China grant nos. 31830037 (W.Z.) and 32000789 (Y.Y.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceptualized the study. Y.Y., Y.W., Y.Z., H.T., H.Y. and K.Y. performed the experiments. Z.Z. optimized the imaging parameters. Y.Y., Y.W. and H.T. analysed the data under the supervision of W.Z. Y.Y., Y.W. and W.Z. wrote the manuscript.

Corresponding author

Correspondence to Wen Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Emilia Iannilli, Wen Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–4, Results and Methods.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Wang, Y., Zhuang, Y. et al. Decomposition of an odorant in olfactory perception and neural representation. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01849-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing