Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Individual sleep need is flexible and dynamically related to cognitive function

Abstract

Given that sleep deprivation studies consistently show that short sleep causes neurocognitive deficits, the effects of insufficient sleep on brain health and cognition are of great interest and concern. Here we argue that experimentally restricted sleep is not a good model for understanding the normal functions of sleep in naturalistic settings. Cross-disciplinary research suggests that human sleep is remarkably dependent on environmental conditions and social norms, thus escaping universally applicable rules. Sleep need varies over time and differs between individuals, showing a complex relationship with neurocognitive function. This aspect of sleep is rarely addressed in experimental work and is not reflected in expert recommendations about sleep duration. We recommend focusing on the role of individual and environmental factors to improve our understanding of the relationship between human sleep and cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seasonal variation in sleep duration.
Fig. 2: Experimental adaptation of sleep duration.
Fig. 3: Experimental investigations of sleep adaptation.

Similar content being viewed by others

References

  1. Hirshkowitz, M. et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health 1, 233–243 (2015).

    Article  PubMed  Google Scholar 

  2. Watson, N. F. et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 38, 843–844 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Paruthi, S. et al. Pediatric sleep duration consensus statement: a step forward. J. Clin. Sleep Med. 12, 1705–1706 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paruthi, S. et al. Consensus statement of the American Academy of Sleep Medicine on the recommended amount of sleep for healthy children: methodology and discussion. J. Clin. Sleep Med. 12, 1549–1561 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paruthi, S. et al. Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 12, 785–786 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shi, L. et al. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med. Rev. 40, 4–16 (2018).

    Article  PubMed  Google Scholar 

  7. Hatfield, C. F., Herbert, J., van Someren, E. J., Hodges, J. R. & Hastings, M. H. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain 127, 1061–1074 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Videnovic, A., Lazar, A. S., Barker, R. A. & Overeem, S. ‘The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 10, 683–693 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prinz, P. N. et al. Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol. Aging 3, 361–370 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Irwin, M. R. & Vitiello, M. V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. https://doi.org/10.1016/S1474-4422(18)30450-2 (2019).

  11. Mander, B. A., Winer, J. R., Jagust, W. J. & Walker, M. P. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 39, 552–566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lowe, C. J., Safati, A. & Hall, P. A. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci. Biobehav. Rev. 80, 586–604 (2017).

    Article  PubMed  Google Scholar 

  13. Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose–response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126 (2003).

    Article  PubMed  Google Scholar 

  14. Coutrot, A. et al. Reported sleep duration reveals segmentation of the adult life-course into three phases. Nat. Commun. 13, 7697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fjell, A. M. et al. No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy. Nat. Hum. Behav. 7, 2008–2022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang, S.-Y. et al. Sleep, physical activity, sedentary behavior, and risk of incident dementia: a prospective cohort study of 431,924 UK Biobank participants. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01655-y (2022).

  17. Shen, X., Wu, Y. & Zhang, D. Nighttime sleep duration, 24-hour sleep duration and risk of all-cause mortality among adults: a meta-analysis of prospective cohort studies. Sci. Rep. 6, 21480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horne, J. The end of sleep: ‘sleep debt’ versus biological adaptation of human sleep to waking needs. Biol. Psychol. 87, 1–14 (2011).

    Article  PubMed  Google Scholar 

  19. Rattenborg, N. C. et al. Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2016.0251 (2017).

  20. Ullsperger, M., Fischer, A. G., Nigbur, R. & Endrass, T. Neural mechanisms and temporal dynamics of performance monitoring. Trends Cogn. Sci. 18, 259–267 (2014).

    Article  PubMed  Google Scholar 

  21. Borbely, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    CAS  PubMed  Google Scholar 

  22. Tkachenko, O. & Dinges, D. F. Interindividual variability in neurobehavioral response to sleep loss: a comprehensive review. Neurosci. Biobehav. Rev. 89, 29–48 (2018).

    Article  PubMed  Google Scholar 

  23. Siegel, J. M. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 10, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voldsbekk, I. et al. Sleep and sleep deprivation differentially alter white matter microstructure: a mixed model design utilising advanced diffusion modelling. NeuroImage 226, 117540 (2021).

    Article  PubMed  Google Scholar 

  25. Yeo, B. T., Tandi, J. & Chee, M. W. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. NeuroImage 111, 147–158 (2015).

    Article  PubMed  Google Scholar 

  26. Ma, N., Dinges, D. F., Basner, M. & Rao, H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 38, 233–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Banks, S., Van Dongen, H. P., Maislin, G. & Dinges, D. F. Neurobehavioral dynamics following chronic sleep restriction: dose–response effects of one night for recovery. Sleep 33, 1013–1026 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jackson, M. L. et al. Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med. Rev. 17, 215–225 (2013).

    Article  PubMed  Google Scholar 

  29. Belenky, G. et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose–response study. J. Sleep Res. 12, 1–12 (2003).

    Article  PubMed  Google Scholar 

  30. Zamore, Z. & Veasey, S. C. Neural consequences of chronic sleep disruption. Trends Neurosci. https://doi.org/10.1016/j.tins.2022.05.007 (2022).

  31. Siegel, J. M. Sleep function: an evolutionary perspective. Lancet Neurol. 21, 937–946 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yetish, G. et al. Natural sleep and its seasonal variations in three pre-industrial societies. Curr. Biol. 25, 2862–2868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Samson, R. D. The human sleep paradox: the unexpected sleeping habits of Homo sapiens. Annu. Rev. Anthropol. 50, 259–274 (2021).

    Article  Google Scholar 

  34. Al Lawati, I., Zadjali, F. & Al-Abri, M. A. Seasonal variation and sleep patterns in a hot climate Arab Region. Sleep Breath. https://doi.org/10.1007/s11325-022-02620-3 (2022).

  35. Titova, O. E., Lindberg, E., Elmstahl, S., Lind, L. & Benedict, C. Seasonal variations in sleep duration and sleep complaints: a Swedish cohort study in middle-aged and older individuals. J. Sleep Res. 31, e13453 (2022).

    Article  PubMed  Google Scholar 

  36. Suzuki, M. et al. Seasonal changes in sleep duration and sleep problems: a prospective study in Japanese community residents. PLoS ONE 14, e0215345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mattingly, S. M. et al. The effects of seasons and weather on sleep patterns measured through longitudinal multimodal sensing. NPJ Digit. Med. 4, 76 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Karunanayake, C. P. et al. Seasonal changes in sleep patterns in two Saskatchewan First Nation communities. Clocks Sleep 3, 415–428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kleitman, N. & Kleitman, H. The sleep–wakefulness pattern in the Arctic. Sci. Mon. 76, 349–356 (1953).

    Google Scholar 

  40. Bódizs, R. in Sleep Medicine Textbook 2nd edn (eds Bassetti, C. et al.) 41–56 (European Sleep Research Society, 2021).

  41. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sangalli, L. & Boggero, I. A. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: a systematic review. Sleep Med. 101, 322–349 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Besedovsky, L., Lange, T. & Born, J. Sleep and immune function. Pflugers Arch. 463, 121–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Fruth, B., Tagg, N. & Stewart, F. Sleep and nesting behavior in primates: a review. Am. J. Phys. Anthropol. 166, 499–509 (2018).

    Article  PubMed  Google Scholar 

  46. Ju, Y. S. et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain 140, 2104–2111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maquet, P. Sleep function(s) and cerebral metabolism. Behav. Brain Res. 69, 75–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Irwin, M. R. Why sleep is important for health: a psychoneuroimmunology perspective. Annu. Rev. Psychol. 66, 143–172 (2015).

    Article  PubMed  Google Scholar 

  49. Gravett, N. et al. Inactivity/sleep in two wild free-roaming African elephant matriarchs—does large body size make elephants the shortest mammalian sleepers? PLoS ONE 12, e0171903 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keene, A. C. & Duboue, E. R. The origins and evolution of sleep. J. Exp. Biol. https://doi.org/10.1242/jeb.159533 (2018).

  51. Sieck, G. Life at the extreme: physiological adaptation. Physiol. (Bethesda) 30, 84–85 (2015).

    CAS  Google Scholar 

  52. Williams, C. T., Barnes, B. M. & Buck, C. L. Persistence, entrainment, and function of circadian rhythms in polar vertebrates. Physiol. (Bethesda) 30, 86–96 (2015).

    CAS  Google Scholar 

  53. Nunn, C. L., Samson, D. R. & Krystal, A. D. Shining evolutionary light on human sleep and sleep disorders. Evol. Med. Public Health 2016, 227–243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lesku, J. A. et al. Adaptive sleep loss in polygynous pectoral sandpipers. Science 337, 1654–1658 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Walker, M. P. Sleep essentialism. Brain 144, 697–699 (2021).

    Article  PubMed  Google Scholar 

  56. van Oort, B. E., Tyler, N. J., Gerkema, M. P., Folkow, L. & Stokkan, K. A. Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften 94, 183–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Burn, C. C. Bestial boredom: a biological perspective on animal boredom and suggestions for its scientific investigation. Anim. Behav. 130, 141–151 (2017).

    Article  Google Scholar 

  58. Danckert, J. & Elpidorou, A. In search of boredom: beyond a functional account. Trends Cogn. Sci. 27, 494–507 (2023).

    Article  PubMed  Google Scholar 

  59. Wilson, T. D. et al. Just think: the challenges of the disengaged mind. Science 345, 75–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rattenborg, N. C. et al. Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biol. Lett. 4, 402–405 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Calisi, R. M. & Bentley, G. E. Lab and field experiments: are they the same animal? Horm. Behav. 56, 1–10 (2009).

    Article  PubMed  Google Scholar 

  62. Horne, J. Why We Sleep: The Function of Sleep in Humans and Other Mammals (Oxford Univ. Press, 1988).

  63. Nunn, C. L. & Samson, D. R. Sleep in a comparative context: investigating how human sleep differs from sleep in other primates. Am. J. Phys. Anthropol. 166, 601–612 (2018).

    Article  PubMed  Google Scholar 

  64. Samson, D. R. & Nunn, C. L. Sleep intensity and the evolution of human cognition. Evol. Anthropol. 24, 225–237 (2015).

    Article  PubMed  Google Scholar 

  65. Worthman, C. M. in Family Contexts of Sleep and Health Across the Life Course (eds McHale, S. M. et al.) 123–151 (Springer, 2017).

  66. Herculano-Houzel, S. Decreasing sleep requirement with increasing numbers of neurons as a driver for bigger brains and bodies in mammalian evolution. Proc. R. Soc. B 282, 20151853 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. McKinley, M. J. et al. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol. (Oxf.) 214, 8–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Angilletta, M. J. Jr., Youngblood, J. P., Neel, L. K. & VandenBrooks, J. M. The neuroscience of adaptive thermoregulation. Neurosci. Lett. 692, 127–136 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Czeisler, C. A., Weitzman, E., Moore-Ede, M. C., Zimmerman, J. C. & Knauer, R. S. Human sleep: its duration and organization depend on its circadian phase. Science 210, 1264–1267 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Kitahama, K. et al. Localization of CRF-immunoreactive neurons in the cat medulla oblongata: their presence in the inferior olive. Cell Tissue Res. 251, 137–143 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Harding, C. D., Yovel, Y., Peirson, S. N., Hackett, T. D. & Vyazovskiy, V. V. Re-examining extreme sleep duration in bats: implications for sleep phylogeny, ecology, and function. Sleep https://doi.org/10.1093/sleep/zsac064 (2022).

  72. Vallat, R. et al. How people wake up is associated with previous night’s sleep together with physical activity and food intake. Nat. Commun. 13, 7116 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Friborg, O., Bjorvatn, B., Amponsah, B. & Pallesen, S. Associations between seasonal variations in day length (photoperiod), sleep timing, sleep quality and mood: a comparison between Ghana (5 degrees) and Norway (69 degrees). J. Sleep Res. 21, 176–184 (2012).

    Article  PubMed  Google Scholar 

  74. Sivertsen, B., Friborg, O., Pallesen, S., Vedaa, O. & Hopstock, L. A. Sleep in the land of the midnight sun and polar night: the Tromso study. Chronobiol. Int. 38, 334–342 (2021).

    Article  PubMed  Google Scholar 

  75. Pilz, L. K., Levandovski, R., Oliveira, M. A. B., Hidalgo, M. P. & Roenneberg, T. Sleep and light exposure across different levels of urbanisation in Brazilian communities. Sci. Rep. 8, 11389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beale, A. D. et al. Comparison between an African town and a neighbouring village shows delayed, but not decreased, sleep during the early stages of urbanisation. Sci. Rep. 18, 5697 (2017).

    Article  Google Scholar 

  77. Samson, D. R. et al. Segmented sleep in a nonelectric, small-scale agricultural society in Madagascar. Am. J. Hum. Biol. https://doi.org/10.1002/ajhb.22979 (2017).

  78. Casiraghi, L. et al. Moonstruck sleep: synchronization of human sleep with the moon cycle under field conditions. Sci. Adv. https://doi.org/10.1126/sciadv.abe0465 (2021).

  79. Moreno, C. R. et al. Sleep patterns in Amazon rubber tappers with and without electric light at home. Sci. Rep. 5, 14074 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Soldatos, C. R., Allaert, F. A., Ohta, T. & Dikeos, D. G. How do individuals sleep around the world? Results from a single-day survey in ten countries. Sleep Med. 6, 5–13 (2005).

    Article  PubMed  Google Scholar 

  81. Walch, O. J., Cochran, A. & Forger, D. B. A global quantification of ‘normal’ sleep schedules using smartphone data. Sci. Adv. 2, e1501705 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Steptoe, A., Peacey, V. & Wardle, J. Sleep duration and health in young adults. Arch. Intern. Med. 166, 1689–1692 (2006).

    Article  PubMed  Google Scholar 

  83. Olds, T., Blunden, S., Petkov, J. & Forchino, F. The relationships between sex, age, geography and time in bed in adolescents: a meta-analysis of data from 23 countries. Sleep Med. Rev. 14, 371–378 (2010).

    Article  PubMed  Google Scholar 

  84. Biggs, S. N., Lushington, K., James Martin, A., van den Heuvel, C. & Declan Kennedy, J. Gender, socioeconomic, and ethnic differences in sleep patterns in school-aged children. Sleep Med. 14, 1304–1309 (2013).

    Article  PubMed  Google Scholar 

  85. Cheung, B. Y., Takemura, K., Ou, C., Gale, A. & Heine, S. J. Considering cross-cultural differences in sleep duration between Japanese and Canadian university students. PLoS ONE 16, e0250671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cavailles, C. et al. Trajectories of sleep duration and timing before dementia: a 14-year follow-up study. Age Ageing https://doi.org/10.1093/ageing/afac186 (2022).

  87. Bubu, O. M. et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep https://doi.org/10.1093/sleep/zsw032 (2017).

  88. Dun, C. et al. Sleep disorders and the development of Alzheimer’s disease among U.S. Medicare beneficiaries. J. Am. Geriatr. Soc. 70, 299–301 (2022).

    Article  PubMed  Google Scholar 

  89. Tucker, A. M., Dinges, D. F. & Van Dongen, H. P. Trait interindividual differences in the sleep physiology of healthy young adults. J. Sleep Res. 16, 170–180 (2007).

    Article  PubMed  Google Scholar 

  90. Casale, C. E. & Goel, N. Genetic markers of differential vulnerability to sleep loss in adults. Genes (Basel) https://doi.org/10.3390/genes12091317 (2021).

  91. Kuna, S. T. et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep 35, 1223–1233 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Madrid-Valero, J. J., Rubio-Aparicio, M., Gregory, A. M., Sanchez-Meca, J. & Ordonana, J. R. Twin studies of subjective sleep quality and sleep duration, and their behavioral correlates: systematic review and meta-analysis of heritability estimates. Neurosci. Biobehav. Rev. 109, 78–89 (2020).

    Article  PubMed  Google Scholar 

  93. Kocevska, D., Barclay, N. L., Bramer, W. M., Gehrman, P. R. & Van Someren, E. J. W. Heritability of sleep duration and quality: a systematic review and meta-analysis. Sleep Med. Rev. 59, 101448 (2021).

    Article  PubMed  Google Scholar 

  94. Garfield, V. Sleep duration: a review of genome-wide association studies (GWAS) in adults from 2007 to 2020. Sleep Med. Rev. 56, 101413 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Mullaney, D. J., Johnson, L. C., Naitoh, J. P., Friedmann, J. K. & Globus, G. G. Sleep during and after gradual sleep reduction. Psychophysiology 14, 237–244 (1977).

    Article  CAS  PubMed  Google Scholar 

  96. Freidmann, J. et al. Performance and mood during and after gradual sleep reduction. Psychophysiology 14, 245–250 (1977).

    Article  CAS  PubMed  Google Scholar 

  97. Horne, J. A. & Wilkinson, S. Chronic sleep reduction: daytime vigilance performance and EEG measures of sleepiness, with particular reference to ‘practice’ effects. Psychophysiology 22, 69–78 (1985).

    Article  CAS  PubMed  Google Scholar 

  98. Youngstedt, S. D. et al. Tolerance of chronic 90-minute time-in-bed restriction in older long sleepers. Sleep 32, 1467–1479 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. O’Sullivan, R., Bissell, S., Hamilton, A., Bagshaw, A. & Richards, C. Concordance of objective and subjective measures of sleep in children with neurodevelopmental conditions: a systematic review and meta-analysis. Sleep Med. Rev. 71, 101814 (2023).

    Article  PubMed  Google Scholar 

  100. Roehrs, T., Shore, E., Papineau, K., Rosenthal, L. & Roth, T. A two-week sleep extension in sleepy normals. Sleep 19, 576–582 (1996).

    CAS  PubMed  Google Scholar 

  101. Roehrs, T., Timms, V., Zwyghuizen-Doorenbos, A. & Roth, T. Sleep extension in sleepy and alert normals. Sleep 12, 449–457 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Horne, J. Sleepiness as a need for sleep: when is enough, enough? Neurosci. Biobehav. Rev. 34, 108–118 (2010).

    Article  PubMed  Google Scholar 

  103. Harrison, Y. & Horne, J. A. Long-term extension to sleep—are we really chronically sleep deprived? Psychophysiology 33, 22–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Clark, C., Rivas, E. & Gonzales, J. U. Six nights of sleep extension increases regional cerebral oxygenation without modifying cognitive performance at rest or following acute aerobic exercise. J. Sleep Res. 31, e13582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Arnal, P. J. et al. Benefits of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and recovery. Sleep 38, 1935–1943 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kamdar, B. B., Kaplan, K. A., Kezirian, E. J. & Dement, W. C. The impact of extended sleep on daytime alertness, vigilance, and mood. Sleep Med. 5, 441–448 (2004).

    Article  PubMed  Google Scholar 

  107. Taub, J. M., Globus, G. G., Phoebus, E. & Drury, R. Extended sleep and performance. Nature 233, 142–143 (1971).

    Article  CAS  PubMed  Google Scholar 

  108. Taub, J. M. Effects of ad lib extended-delayed sleep on sensorimotor performance, memory and sleepiness in the young adult. Physiol. Behav. 25, 77–87 (1980).

    Article  CAS  PubMed  Google Scholar 

  109. King, E. & Scullin, M. K. The 8-hour challenge: incentivizing sleep during end-of-term assessments. J. Inter. Des. 44, 85–99 (2019).

    PubMed  Google Scholar 

  110. Galli, O., Jones, C. W., Larson, O., Basner, M. & Dinges, D. F. Predictors of interindividual differences in vulnerability to neurobehavioral consequences of chronic partial sleep restriction. Sleep https://doi.org/10.1093/sleep/zsab278 (2022).

  111. Larsson, I. et al. Sleep interventions for children with attention deficit hyperactivity disorder (ADHD): a systematic literature review. Sleep Med. 102, 64–75 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Harrison, Y. & Horne, J. A. The impact of sleep deprivation on decision making: a review. J. Exp. Psychol. Appl. 6, 236–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Sasmita, K., Massar, S. A. A., Lim, J. & Chee, M. W. L. Reward motivation normalises temporal attention after sleep deprivation. J. Sleep Res. 28, e12796 (2019).

    Article  PubMed  Google Scholar 

  114. Horne, J. A. & Pettitt, A. N. High incentive effects on vigilance performance during 72 hours of total sleep deprivation. Acta Psychol. (Amst.) 58, 123–139 (1985).

    Article  CAS  PubMed  Google Scholar 

  115. Lim, J. & Dinges, D. F. Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 1129, 305–322 (2008).

    Article  PubMed  Google Scholar 

  116. Massar, S. A. A., Lim, J., Sasmita, K. & Chee, M. W. L. Sleep deprivation increases the costs of attentional effort: performance, preference and pupil size. Neuropsychologia 123, 169–177 (2019).

    Article  PubMed  Google Scholar 

  117. Horne, J. & Moseley, R. Sudden early-morning awakening impairs immediate tactical planning in a changing ‘emergency’ scenario. J. Sleep Res. 20, 275–278 (2011).

    Article  PubMed  Google Scholar 

  118. Shekari Soleimanloo, S., White, M. J., Garcia-Hansen, V. & Smith, S. S. The effects of sleep loss on young drivers’ performance: a systematic review. PLoS ONE 12, e0184002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Czeisler, C. A. et al. Sleep-deprived motor vehicle operators are unfit to drive: a multidisciplinary expert consensus statement on drowsy driving. Sleep Health 2, 94–99 (2016).

    Article  PubMed  Google Scholar 

  120. Anderson, J. L. et al. Sleep in fall/winter seasonal affective disorder: effects of light and changing seasons. J. Psychosom. Res. 38, 323–337 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Kantermann, T., Juda, M., Merrow, M. & Roenneberg, T. The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr. Biol. 17, 1996–2000 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Sivertsen, B., Overland, S., Krokstad, S. & Mykletun, A. Seasonal variations in sleep problems at latitude 63 degrees–65 degrees in Norway: the Nord-Trondelag Health Study, 1995–1997. Am. J. Epidemiol. 174, 147–153 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the European Research Council (grant agreement numbers 771375 and 313440 to K.B.W., and 283634 and 725025 to A.M.F.), the Research Council of Norway (to K.B.W. and A.M.F.) and the European Commission EU Horizon 2020 programme (grant agreement number 732592—Lifebrain). We thank Inge Amlien for making Fig. 1c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders M. Fjell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Sara Mednick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjell, A.M., Walhovd, K.B. Individual sleep need is flexible and dynamically related to cognitive function. Nat Hum Behav 8, 422–430 (2024). https://doi.org/10.1038/s41562-024-01827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-024-01827-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing