Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Psychological factors underlying attitudes toward AI tools

Abstract

What are the psychological factors driving attitudes toward artificial intelligence (AI) tools, and how can resistance to AI systems be overcome when they are beneficial? Here we first organize the main sources of resistance into five main categories: opacity, emotionlessness, rigidity, autonomy and group membership. We relate each of these barriers to fundamental aspects of cognition, then cover empirical studies providing correlational or causal evidence for how the barrier influences attitudes toward AI tools. Second, we separate each of the five barriers into AI-related and user-related factors, which is of practical relevance in developing interventions towards the adoption of beneficial AI tools. Third, we highlight potential risks arising from these well-intentioned interventions. Fourth, we explain how the current Perspective applies to various stakeholders, including how to approach interventions that carry known risks, and point to outstanding questions for future work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beal, G. M. & Bohlen, J. M. The Diffusion Process (Iowa State Agricultural Experiment Station Special Report no. 18), https://ageconsearch.umn.edu/record/17351/files/ar560111.pdf (Iowa State Univ., 1956).

  2. Bass, F. M. A new product growth for model consumer durables. Manag. Sci. 15, 215–227 (1969).

    Article  Google Scholar 

  3. Rogers, E. M. Diffusion of Innovations (Free Press of Glencoe, 1962).

  4. Meehl, P. E. Clinical Versus Statistical Prediction: A Theoretical Analysis and a Review of the Evidence (Univ. Minnesota Press, 1954).

  5. Lehmann, C. A., Haubitz, C. B., Fügener, A. & Thonemann, U. W. The risk of algorithm transparency: how algorithm complexity drives the effects on the use of advice. Prod. Oper. Manag. 31, 3419–3434 (2022).

    Article  Google Scholar 

  6. Highhouse, S. Stubborn reliance on intuition and subjectivity in employee selection. Ind. Organ. Psychol. 1, 333–342 (2008).

    Article  Google Scholar 

  7. Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011).

    Article  PubMed  Google Scholar 

  8. Wischnewski, M., Krämer, N. & Müller, E. Measuring and understanding trust calibrations for automated systems: a survey of the state-of-the-art and future directions. In Proc. 2023 CHI Conf. on Human Factors in Computing Systems (eds. Schmidt, A. et al.) 755, 1–16 (ACM, 2023).

  9. Averill, J. R. Personal control over aversive stimuli and its relationship to stress. Psychol. Bull. 80, 286–303 (1973).

    Article  Google Scholar 

  10. Burger, J. M. & Cooper, H. M. The desirability of control. Motiv. Emot. 3, 381–393 (1979).

    Article  Google Scholar 

  11. Ahn, W.-K., Novick, L. R. & Kim, N. S. Understanding behavior makes it more normal. Psychon. Bull. Rev. 10, 746–752 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pennington, N. & Hastie, R. Explaining the evidence: tests of the Story Model for juror decision making. J. Personal. Soc. Psychol. 62, 189 (1992).

    Article  Google Scholar 

  13. Legare, C. H. Exploring explanation: explaining inconsistent evidence informs exploratory, hypothesis‐testing behavior in young children. Child Dev. 83, 173–185 (2012).

    Article  PubMed  Google Scholar 

  14. Wong, W.-h & Yudell, Z. A normative account of the need for explanation. Synthese 192, 2863–2885 (2015).

    Article  Google Scholar 

  15. De Freitas, J. & Johnson, S. G. Optimality bias in moral judgment. J. Exp. Soc. Psychol. 79, 149–163 (2018).

    Article  Google Scholar 

  16. Misztal, B. A. Normality and trust in Goffman’s theory of interaction order. Sociol. Theory 19, 312–324 (2001).

    Article  Google Scholar 

  17. Burrell, J. How the machine ‘thinks’: understanding opacity in machine learning algorithms. Big Data Soc. 3, 2053951715622512 (2016).

    Article  Google Scholar 

  18. Castelo, N. Understanding and improving consumer reactions to service bots. J. Consumer Res. https://doi.org/10.1093/jcr/ucad023 (2023).

  19. Nussberger, A.-M., Luo, L., Celis, L. E. & Crockett, M. J. Public attitudes value interpretability but prioritize accuracy in artificial intelligence. Nat. Commun. 13, 5821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beller, J., Heesen, M. & Vollrath, M. Improving the driver–automation interaction: an approach using automation uncertainty. Hum. Factors 55, 1130–1141 (2013).

    Article  PubMed  Google Scholar 

  21. Koo, J. et al. Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust and performance. Int. J. Interact. Des. Manuf. (IJIDeM) 9, 269–275 (2015).

    Article  Google Scholar 

  22. Kraus, J., Scholz, D., Stiegemeier, D. & Baumann, M. The more you know: trust dynamics and calibration in highly automated driving and the effects of take-overs, system malfunction and system transparency. Hum. Factors 62, 718–736 (2020).

    Article  PubMed  Google Scholar 

  23. Cadario, R., Longoni, C. & Morewedge, C. K. Understanding, explaining and utilizing medical artificial intelligence. Nat. Hum. Behav. 5, 1636–1642 (2021).

    Article  PubMed  Google Scholar 

  24. Confalonieri, R., Coba, L., Wagner, B. & Besold, T. R. A historical perspective of explainable artificial intelligence. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 11, e1391 (2021).

    Article  Google Scholar 

  25. Kim, D. et al. How should the results of artificial intelligence be explained to users? Research on consumer preferences in user-centered explainable artificial intelligence. Technol. Forecast. Soc. Change 188, 122343 (2023).

    Article  Google Scholar 

  26. Larasati, R., De Liddo, A. & Motta, E. The effect of explanation styles on user’s trust. In ExSS-ATEC 2020: Explainable Smart Systems for Algorithmic Transparency in Emerging Technologies (eds. Smith-Renner, A. et al.) https://ceur-ws.org/Vol-2582/paper6.pdf (CEUR-WS, 2020).

  27. Nisbett, R. E. & Wilson, T. D. Telling more than we can know: verbal reports on mental processes. Psychol. Rev. 84, 231–259 (1977).

    Article  Google Scholar 

  28. Kahneman, D. Maps of bounded rationality: psychology for behavioral economics. Am. Econ. Rev. 93, 1449–1475 (2003).

    Article  Google Scholar 

  29. Morewedge, C. K. & Kahneman, D. Associative processes in intuitive judgment. Trends Cogn. Sci. 14, 435–440 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Waytz, A., Cacioppo, J. & Epley, N. Who sees human? The stability and importance of individual differences in anthropomorphism. Perspect. Psychol. Sci. 5, 219–232 (2010).

    Article  PubMed  Google Scholar 

  31. Epley, N., Waytz, A. & Cacioppo, J. T. On seeing human: a three-factor theory of anthropomorphism. Psychol. Rev. 114, 864–886 (2007).

    Article  PubMed  Google Scholar 

  32. Jacobs, O. L., Gazzaz, K. & Kingstone, A. Mind the robot! Variation in attributions of mind to a wide set of real and fictional robots. Int. J. Soc. Robot. 14, 529–537 (2022).

    Article  Google Scholar 

  33. Castelo, N., Bos, M. W. & Lehmann, D. R. Task-dependent algorithm aversion. J. Mark. Res. 56, 809–825 (2019).

    Article  Google Scholar 

  34. Kodra, E., Senechal, T., McDuff, D. & El Kaliouby, R. From dials to facial coding: automated detection of spontaneous facial expressions for media research. In Proc. 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) 1–6 (IEEE, 2013).

  35. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. Preprint at https://arxiv.org/abs/2204.06125 (2022).

  36. Liu, B., Fu, J., Kato, M. P. & Yoshikawa, M. Beyond narrative description: generating poetry from images by multi-adversarial training. In Proc. 26th ACM International Conference on Multimedia 783–791 (ACM, 2018).

  37. Hernandez-Olivan, C. & Beltran, J. R. Music composition with deep learning: a review. In Advances in Speech and Music Technology: Computational Aspects and Applications (eds. Biswas, A., Wennekes, E., Wieczorkowaska, A., & Laskar, R.H.) 25–50 (Springer International, 2023).

  38. Yeomans, M., Shah, A., Mullainathan, S. & Kleinberg, J. Making sense of recommendations. J. Behav. Decis. Mak. 32, 403–414 (2019).

    Article  Google Scholar 

  39. Herremans, D., Martens, D. & Sörensen, K. Dance hit song prediction. J. N. Music Res. 43, 291–302 (2014).

    Article  Google Scholar 

  40. Inbar, Y., Cone, J. & Gilovich, T. People’s intuitions about intuitive insight and intuitive choice. J. Pers. Soc. Psychol. 99, 232–247 (2010).

    Article  PubMed  Google Scholar 

  41. Crowley, A. E., Spangenberg, E. R. & Hughes, K. R. Measuring the hedonic and utilitarian dimensions of attitudes toward product categories. Mark. Lett. 3, 239–249 (1992).

    Article  Google Scholar 

  42. Hirschman, E. C. & Holbrook, M. B. Hedonic consumption: emerging concepts, methods and propositions. J. Mark. 46, 92–101 (1982).

    Article  Google Scholar 

  43. Longoni, C. & Cian, L. Artificial intelligence in utilitarian vs hedonic contexts: the ‘word-of-machine’ effect. J. Mark. 86, 91–108 (2022).

    Article  Google Scholar 

  44. Waytz, A., Heafner, J. & Epley, N. The mind in the machine: anthropomorphism increases trust in an autonomous vehicle. J. Exp. Soc. Psychol. 52, 113–117 (2014).

    Article  Google Scholar 

  45. Li, S., Peluso, A. M. & Duan, J. Why do we prefer humans to artificial intelligence in telemarketing? A mind perception explanation. J. Retail. Consum. Serv. 70, 103139 (2023).

    Article  Google Scholar 

  46. Holthöwer, J. & van Doorn, J. Robots do not judge: service robots can alleviate embarrassment in service encounters. J. Acad. Mark. Sci. 51, 767–784 (2022).

    Article  Google Scholar 

  47. Pitardi, V., Wirtz, J., Paluch, S. & Kunz, W. H. Service robots, agency and embarrassing service encounters. J. Serv. Manag. 33, 389–414 (2021).

    Article  Google Scholar 

  48. Hong, Y.-y., Chiu, C.-y. & Dweck, C. S. Implicit theories of intelligence: reconsidering the role of confidence in achievement motivation. In Efficacy, Agency and Self-Esteem (ed. Kernis, M.H.) 197–216 (Springer, 1995).

  49. Hancock, P. A. Imposing limits on autonomous systems. Ergonomics 60, 284–291 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. McClean, T. The Path from Automation to Autonomy is Swarming with Activity, https://www.forbes.com/sites/forbestechcouncil/2021/04/01/the-path-from-automation-to-autonomy-is-swarming-with-activity/?sh=134ca90f3716 (Forbes, 2021).

  51. Reich, T., Kaju, A. & Maglio, S. J. How to overcome algorithm aversion: learning from mistakes. J. Consum. Psychol. 33, 285–302 (2022).

    Article  Google Scholar 

  52. Loughnan, S. & Haslam, N. Animals and androids: implicit associations between social categories and nonhumans. Psychol. Sci. 18, 116–121 (2007).

    Article  PubMed  Google Scholar 

  53. Berger, B., Adam, M., Rühr, A. & Benlian, A. Watch me improve—algorithm aversion and demonstrating the ability to learn. Bus. Inf. Syst. Eng. 63, 55–68 (2021).

    Article  Google Scholar 

  54. Nissenbaum, H. & Walker, D. Will computers dehumanize education? A grounded approach to values at risk. Technol. Soc. 20, 237–273 (1998).

    Article  Google Scholar 

  55. Longoni, C., Bonezzi, A. & Morewedge, C. K. Resistance to medical artificial intelligence. J. Consum. Res. 46, 629–650 (2019).

    Article  Google Scholar 

  56. Mou, Y., Xu, T. & Hu, Y. Uniqueness neglect on consumer resistance to AI. Market. Intell. Plan. 41, 669–689 (2023).

    Article  Google Scholar 

  57. Purcell, Z. A. & Bonnefon, J.-F. Humans feel too special for machines to score their morals. PNAS Nexus 2, pgad179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, N. T. Y., Kirshner, S. N. & Lim, E. T. Is algorithm aversion WEIRD? A cross-country comparison of individual-differences and algorithm aversion. J. Retail. Consum. Serv. 72, 103259 (2023).

    Article  Google Scholar 

  59. Yampolskiy, R. V. Unpredictability of AI: on the impossibility of accurately predicting all actions of a smarter agent. J. Artif. Intell. Conscious. 7, 109–118 (2020).

    Article  Google Scholar 

  60. De Freitas, J., Uǧuralp, K., Uǧuralp, Z. O. & Puntoni, S. Chatbots and Mental Health: Insights into the Safety of Generative AI Working Paper 23-011 (Harvard Business School, 2023).

  61. Leotti, L. A., Iyengar, S. S. & Ochsner, K. N. Born to choose: the origins and value of the need for control. Trends Cogn. Sci. 14, 457–463 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bandura, A. Self-efficacy: The Exercise of Control (W. H. Freeman, 1997).

  63. Rotter, J. B. Generalized expectancies of internal versus external control of reinforcements. Psychol. Monogr. 80, 609 (1966).

    Article  Google Scholar 

  64. Ryan, R. M. & Deci, E. L. Self‐regulation and the problem of human autonomy: does psychology need choice, self‐determination and will? J. Personal. 74, 1557–1586 (2006).

    Article  Google Scholar 

  65. Bown, N. J., Read, D. & Summers, B. The lure of choice. J. Behav. Decis. Mak. 16, 297–308 (2003).

    Article  Google Scholar 

  66. Suzuki, S. Effects of number of alternatives on choice in humans. Behav. Process. 39, 205–214 (1997).

    Article  CAS  Google Scholar 

  67. Cordova, D. I. & Lepper, M. R. Intrinsic motivation and the process of learning: beneficial effects of contextualization, personalization and choice. J. Educ. Psychol. 88, 715–730 (1996).

    Article  Google Scholar 

  68. Shapiro, D. H. Jr, Schwartz, C. E. & Astin, J. A. Controlling ourselves, controlling our world: psychology’s role in understanding positive and negative consequences of seeking and gaining control. Am. Psychol. 51, 1213–1230 (1996).

    Article  PubMed  Google Scholar 

  69. Premack, D. The infant’s theory of self-propelled objects. Cognition 36, 1–16 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Beer, J. M., Fisk, A. D. & Rogers, W. A. Toward a framework for levels of robot autonomy in human-robot interaction. J. Hum. Robot Interact. 3, 74–99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. De Bellis, E. & Johar, G. V. Autonomous shopping systems: identifying and overcoming barriers to consumer adoption. J. Retail. 96, 74–87 (2020).

    Article  Google Scholar 

  72. Schweitzer, F. & Van den Hende, E. A. To be or not to be in thrall to the march of smart products. Psychol. Mark. 33, 830–842 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mandler, J. M. How to build a baby: II. Conceptual primitives. Psychol. Rev. 99, 587–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Leslie, A. M. ToMM, ToBy, and Agency: Core architecture and domain specificity. In Mapping the Mind: Domain Specificity in Cognition and Culture (eds. Hirschfeld, L.A. & Gelman, S.A.) 119–148 (Cambridge Univ. Press, 1994).

  75. Dennett, D. C. The Intentional Stance (MIT Press, 1989).

  76. Gergely, G. & Csibra, G. Teleological reasoning in infancy: the naïve theory of rational action. Trends Cogn. Sci. 7, 287–292 (2003).

    Article  PubMed  Google Scholar 

  77. Rijsdijk, S. A. & Hultink, E. J. ‘Honey, have you seen our hamster?’ Consumer evaluations of autonomous domestic products. J. Prod. Innov. Manag. 20, 204–216 (2003).

    Article  Google Scholar 

  78. Wertenbroch, K. et al. Autonomy in consumer choice. Mark. Lett. 31, 429–439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. André, Q. et al. Consumer choice and autonomy in the age of artificial intelligence and big data. Customer Needs Solut. 5, 28–37 (2018).

    Article  Google Scholar 

  80. Brennan, R. & Sachon, L. Self-Driving Cars Make 76% of Americans Feel Less Safe on the Road, https://www.policygenius.com/auto-insurance/self-driving-cars-survey-2022/ (Policy Genius, 2022).

  81. Zimmermann, J. L., Görgen, J., de Bellis, E., Hofstetter, R. & Puntoni, S. Smart product breakthroughs depend on customer control. MIT Sloan Management Review (16 February 2023).

  82. Zimmermann, J. L., de Bellis, E., Hofstetter, R. & Puntoni, S. Cleaning with Dustin Bieber: Nicknaming Autonomous Products and the Effect of Coopetition. In Proc. TMS 2021.

  83. Shaffer, V. A., Probst, C. A., Merkle, E. C., Arkes, H. R. & Medow, M. A. Why do patients derogate physicians who use a computer-based diagnostic support system? Med. Decis. Mak. 33, 108–118 (2013).

    Article  Google Scholar 

  84. Oyserman, D. Identity-based motivation: implications for action-readiness, procedural-readiness and consumer behavior. J. Consum. Psychol. 19, 250–260 (2009).

    Article  Google Scholar 

  85. Cheng, P. W. & Novick, L. R. A probabilistic contrast model of causal induction. J. Personal. Soc. Psychol. 58, 545–567 (1990).

    Article  CAS  Google Scholar 

  86. Menon, T., Morris, M. W., Chiu, C.-Y. & Hong, Y.-Y. Culture and the construal of agency: attribution to individual versus group dispositions. J. Personal. Soc. Psychol. 76, 701–717 (1999).

    Article  Google Scholar 

  87. Leung, E., Paolacci, G. & Puntoni, S. Man versus machine: resisting automation in identity-based consumer behavior. J. Mark. Res. 55, 818–831 (2018).

    Article  Google Scholar 

  88. de Bellis, E., Johar, G. V. & Poletti, N. Meaning of manual labor impedes consumer adoption of autonomous products. J. Market. https://doi.org/10.1177/00222429231171841 (2023).

  89. Inzlicht, M., Shenhav, A. & Olivola, C. Y. The effort paradox: effort is both costly and valued. Trends Cogn. Sci. 22, 337–349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Norton, M. I., Mochon, D. & Ariely, D. The IKEA effect: when labor leads to love. J. Consum. Psychol. 22, 453–460 (2012).

    Article  Google Scholar 

  91. Lim, J. S. & O’Connor, M. Judgemental adjustment of initial forecasts: its effectiveness and biases. J. Behav. Decis. Mak. 8, 149–168 (1995).

    Article  Google Scholar 

  92. Dietvorst, B. J., Simmons, J. P. & Massey, C. Overcoming algorithm aversion: people will use imperfect algorithms if they can (even slightly) modify them. Manag. Sci. 64, 1155–1170 (2018).

    Article  Google Scholar 

  93. Landsbergen, D., Coursey, D. H., Loveless, S. & Shangraw, R. Jr Decision quality, confidence and commitment with expert systems: an experimental study. J. Public Adm. Res. Theory 7, 131–158 (1997).

    Article  Google Scholar 

  94. Caviola, L., Everett, J. A. & Faber, N. S. The moral standing of animals: towards a psychology of speciesism. J. Personal. Soc. Psychol. 116, 1011–1029 (2019).

    Article  Google Scholar 

  95. Schmitt, B. Speciesism: an obstacle to AI and robot adoption. Mark. Lett. 31, 3–6 (2020).

    Article  Google Scholar 

  96. Mori, M. The uncanny valley. Energy 7, 33–35 (1970).

    Google Scholar 

  97. Kamide, H., Kawabe, K., Shigemi, S. & Arai, T. Anshin as a concept of subjective well-being between humans and robots in Japan. Adv. Robot. 29, 1624–1636 (2015).

    Article  Google Scholar 

  98. Dang, J. & Liu, L. Robots are friends as well as foes: ambivalent attitudes toward mindful and mindless AI robots in the United States and China. Comput. Hum. Behav. 115, 106612 (2021).

    Article  Google Scholar 

  99. BidenHarris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety, https://www.whitehouse.gov/briefing-room/statements-releases/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (White House, 2023).

  100. Combatting Online Harms Through Innovation, https://www.ftc.gov/system/files/ftc_gov/pdf/Combatting%20Online%20Harms%20Through%20Innovation%3B%20Federal%20Trade%20Commission%20Report%20to%20Congress.pdf (FTC, 2022).

  101. Fung, P. Etienne, H. Confucius, cyberpunk and Mr. Science: comparing AI ethics principles between China and the EU. AI Ethics 3 505–511 (2023).

  102. Dietvorst, B. J., Simmons, J. P. & Massey, C. Algorithm aversion: people erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 144, 114–126 (2015).

    Article  PubMed  Google Scholar 

  103. Rozenblit, L. & Keil, F. The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26, 521–562 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Morewedge, C. K. Preference for human, not algorithm aversion. Trends Cogn. Sci. 26, 824–826 (2022).

    Article  PubMed  Google Scholar 

  105. Johnson, C. & Tyson, A. People Globally Offer Mixed Views of the Impact of Artificial Intelligence, Job Automation on Society, https://www.pewresearch.org/short-reads/2020/12/15/people-globally-offer-mixed-views-of-the-impact-of-artificial-intelligence-job-automation-on-society/ (Pew Research Center, 2020).

  106. Bostrom, N. Superintelligence: Paths, Dangers, Strategies (Oxford Univ. Press, 2014).

  107. Zhang, C. et al. One small step for generative AI, one giant leap for AGI: a complete survey on ChatGPT in AIGC era. Preprint at https://arxiv.org/abs/2304.06488 (2023).

  108. Purcell, Z. A., Dong, M., Nussberger, A.-M., Köbis, N. & Jakesch, M. Fears about AI-mediated communication are grounded in different expectations for one’s own versus others’ use. Preprint at https://arxiv.org/abs/2305.01670 (2023).

  109. Chan, A., Riché, M. & Clifton, J. Towards the scalable evaluation of cooperativeness in language models. Preprint at https://arxiv.org/abs/2303.13360 (2023).

  110. Köbis, N., Starke, C. & Rahwan, I. The promise and perils of using artificial intelligence to fight corruption. Nat. Mach. Intell. 4, 418–424 (2022).

    Article  Google Scholar 

  111. Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. User acceptance of computer technology: a comparison of two theoretical models. Manag. Sci. 35, 982–1003 (1989).

    Article  Google Scholar 

  112. Ram, S. A model of innovation resistance. Adv. Consum. Res. 14, 208–212 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian De Freitas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Zoe Purcell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Freitas, J., Agarwal, S., Schmitt, B. et al. Psychological factors underlying attitudes toward AI tools. Nat Hum Behav 7, 1845–1854 (2023). https://doi.org/10.1038/s41562-023-01734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01734-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing