Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quasi-comprehensive exploration of the mechanisms of spatial working memory

An Author Correction to this article was published on 19 May 2023

This article has been updated

Abstract

Why are some spatial patterns remembered more easily than others? There are many possible mechanisms underlying spatial working memory function. Here, the author explores different mechanisms simultaneously in a single conceptual model. He conducts a large-scale experiment (35.4 million responses used to measure human observers’ spatial working memory across 80,000 patterns) and builds a convolutional neural network as a benchmark for what is expected to be explainable. The author then creates a quasi-comprehensive exploration model of spatial working memory based on classic concepts, as well as new notions, including spatial uncertainty, Bayesian integration, out-of-range responses, averaging, grouping, categorical memory, line detection, gap detection, blurring, lateral inhibition, chunking, multiple spatial-frequency channels, redundancy, response bias and random guess. This model provides a tentative overarching framework for the mechanisms of spatial working memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Why are some spatial patterns remembered more easily?
Fig. 2: Patterns of the present study.
Fig. 3: Overview of methods and summary of results.
Fig. 4: A CNN network.
Fig. 5: Mechanisms of the QCE-SWM model (part one).
Fig. 6: Diagram of the QCE-SWM model.
Fig. 7: Mechanisms of the QCE-SWM model (part two).

Similar content being viewed by others

Data availability

All data can be found on the Open Science Framework https://osf.io/makdg/.

Code availability

All scripts used for data analysis can be found on the Open Science Framework https://osf.io/makdg/.

Change history

References

  1. Watts, D. J. Should social science be more solution-oriented? Nat. Hum. Behav. 1, 0015 (2017).

  2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    Article  PubMed  Google Scholar 

  4. Dwyer, D. B., Falkai, P. & Koutsouleris, N. Machine learning approaches for clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14, 91–118 (2018).

    Article  PubMed  Google Scholar 

  5. Goldstone, R. L. & Lupyan, G. Discovering psychological principles by mining naturally occurring data sets. Top. Cogn. Sci. 8, 548–568 (2016).

  6. Peterson, J. C., Abbott, J. T. & Griffiths, T. L. Evaluating (and improving) the correspondence between deep neural networks and human representations. Cogn. Sci. 42, 2648–2669 (2018).

    Article  PubMed  Google Scholar 

  7. Glaser, J. I., Benjamin, A. S., Farhoodi, R. & Kording, K. P. The roles of supervised machine learning in systems neuroscience. Prog. Neurobiol. 175, 126–137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Awad, E. et al. The moral machine experiment. Nature 563, 59–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D. & Griffiths, T. L. Using large-scale experiments and machine learning to discover theories of human decision-making. Science 372, 1209–1214 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Agrawal, M., Peterson, J. C. & Griffiths, T. L. Scaling up psychology via scientific regret minimization. Proc. Natl Acad. Sci. USA 117, 8825–8835 (2020).

  11. Pashler, H. Familiarity and visual change detection. Percept. Psychophys. 44, 369–378 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Wheeler, M. E. & Treisman, A. M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002).

    Article  PubMed  Google Scholar 

  13. Xu, Y. D. Limitations of object-based feature encoding in visual short-term memory. J. Exp. Psychol. Hum. Percept. Perform. 28, 458–468 (2002).

    Article  PubMed  Google Scholar 

  14. Olson, I. R. & Jiang, Y. H. Is visual short-term memory object based? Rejection of the ‘strong-object’ hypothesis. Percept. Psychophys. 64, 1055–1067 (2002).

    Article  PubMed  Google Scholar 

  15. Alvarez, G. A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, W. W. & Luck, S. J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bays, P. M. & Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 321, 851–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, L. Unit of visual working memory: a Boolean map provides a better account than an object does. J. Exp. Psychol. Gen. 149, 1–30 (2020).

    Article  PubMed  Google Scholar 

  19. Brady, T. F. & Alvarez, G. A. Contextual effects in visual working memory reveal hierarchically structured memory representations. J. Vis. 15, 6 (2015).

  20. Brady, T. F. & Tenenbaum, J. B. A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85 (2013).

    Article  PubMed  Google Scholar 

  21. Orhan, A. E. & Jacobs, R. A. A probabilistic clustering theory of the organization of visual short-term memory. Psychol. Rev. 120, 297 (2013).

    Article  PubMed  Google Scholar 

  22. Bae, G.-Y., Olkkonen, M., Allred, S. R. & Flombaum, J. I. Why some colors appear more memorable than others: a model combining categories and particulars in color working memory. J. Exp. Psychol. Gen. 144, 744 (2015).

    Article  PubMed  Google Scholar 

  23. Brady, T. F. & Alvarez, G. A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).

    Article  PubMed  Google Scholar 

  24. Langlois, T. A., Jacoby, N., Suchow, J. W. & Griffiths, T. L. Serial reproduction reveals the geometry of visuospatial representations. Proc. Natl Acad. Sci. USA 118, e2012938118 (2021).

  25. Langlois, T. et al. Passive attention in artificial neural networks predicts human visual selectivity. Adv. Neural Inf. Process. Syst. 34, 27094–27106 (2021).

    Google Scholar 

  26. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huttenlocher, J., Hedges, L. V. & Duncan, S. Categories and particulars: prototype effects in estimating spatial location. Psychol. Rev. 98, 352 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Müller, N. G., Mollenhauer, M., Rösler, A. & Kleinschmidt, A. The attentional field has a Mexican hat distribution. Vis. Res. 45, 1129–1137 (2005).

    Article  PubMed  Google Scholar 

  29. Nemes, V. A., Whitaker, D., Heron, J. & McKeefry, D. J. Multiple spatial frequency channels in human visual perceptual memory. Vis. Res. 51, 2331–2339 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Csathó, Á., van der Vloed, G. & van der Helm, P. A. Blobs strengthen repetition but weaken symmetry. Vis. Res. 43, 993–1007 (2003).

    Article  PubMed  Google Scholar 

  31. Treder, M. S. & van der Helm, P. A. Symmetry versus repetition in cyclopean vision: a microgenetic analysis. Vis. Res. 47, 2956–2967 (2007).

    Article  PubMed  Google Scholar 

  32. Sternberg, S. The discovery of processing stages: extensions of Donders’ method. Acta Psychol. 30, 276–315 (1969).

    Article  Google Scholar 

  33. Huang, L. Color is processed less efficiently than orientation in change detection but more efficiently in visual search. Psychol. Sci. 26, 646–652 (2015).

    Article  PubMed  Google Scholar 

  34. Huang, L. FVS 2.0: a unifying framework for understanding the factors of visual-attentional processing. Psychol. Rev. 129, 696 (2022).

    Article  PubMed  Google Scholar 

  35. Huang, L. & Pashler, H. A Boolean map theory of visual attention. Psychol. Rev. 114, 599–631 (2007).

    Article  PubMed  Google Scholar 

  36. Jolly, E. & Chang, L. J. The flatland fallacy: moving beyond low–dimensional thinking. Top. Cogn. Sci. 11, 433–454 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Research Grants Council of Hong Kong (CUHK 14610520 awarded to L.H.). The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. I am grateful to Entelligence (www.eletell.com) for integrating the present experiment into their mobile app ‘Light of the Future’ and to H. Xu for his valuable advice on neural networks.

Author information

Authors and Affiliations

Authors

Contributions

L.H. is the sole author of this article.

Corresponding author

Correspondence to Liqiang Huang.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Jordan Suchow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8, Figs. 1–5 and Tables 1 and 2.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L. A quasi-comprehensive exploration of the mechanisms of spatial working memory. Nat Hum Behav 7, 729–739 (2023). https://doi.org/10.1038/s41562-023-01559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01559-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing