Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles

Abstract

Broca reported ~150 years ago that particular lesions of the left hemisphere impair speech. Since then, other brain regions have been reported to show lateralized structure and function. Yet, studies of brain asymmetry have limited their focus to pairwise comparisons between homologous regions. Here, we characterized separable whole-brain asymmetry patterns in grey and white matter structure from n = 37,441 UK Biobank participants. By pooling information on left–right shifts underlying whole-brain structure, we deconvolved signatures of brain asymmetry that are spatially distributed rather than locally constrained. Classically asymmetric regions turned out to belong to more than one asymmetry pattern. Instead of a single dominant signature, we discovered complementary asymmetry patterns that contributed similarly to whole-brain asymmetry at the population level. These asymmetry patterns were associated with unique collections of phenotypes, ranging from early lifestyle factors to demographic status to mental health indicators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Left–right asymmetry representation ties together spatially dispersed brain features across two dimensions of interdependence.
Fig. 2: The leading whole-brain asymmetry pattern spotlights shifts in the frontal and temporal poles with concomitant contralateral shifts in the occipital pole.
Fig. 3: Second most explanatory whole-brain asymmetry pattern.
Fig. 4: Third whole-brain asymmetry pattern.
Fig. 5: Fourth whole-brain asymmetry pattern.
Fig. 6: Right-handedness-related regional asymmetries show rightward shifts in amygdala, tapetum and middle temporal gyrus and leftward shifts in Crus II of the cerebellum, postcentral gyrus, caudate, pars opercularis and pars triangularis of the inferior frontal gyrus.
Fig. 7: Sex-related regional asymmetries show leftward shifts in the occipital pole, ventral striatum and thalamus in females and rightward shifts in tapetum and planum temporale in females.
Fig. 8: High fluid IQ-related regional asymmetries show rightward shifts in the frontal pole and ventral striatum and leftward shifts in the hippocampus and pallidum.

Similar content being viewed by others

Data availability

The UKBB data are available to other investigators online (ukbiobank.ac.uk). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases. Source data are provided with this paper.

Code availability

A full collection of asymmetry patterns is freely available to and open for reuse by the reader at: https://github.com/ksaltoun/Dissociable_Asymmetry_Patterns. The analysis scripts that reproduce the results of the present study are available upon request.

References

  1. Broca, P. Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bull. Memoires Soc. Anatomique Paris 6, 330–357 (1861).

    Google Scholar 

  2. Gazzaniga, M. S. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 1293–1326 (2000).

    Article  PubMed  Google Scholar 

  3. Toga, A. W. & Thompson, P. M. Mapping brain asymmetry. Nat. Rev. Neurosci. 4, 37–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hartwigsen, G., Bengio, Y. & Bzdok, D. How does hemispheric specialization contribute to human-defining cognition? Neuron 109, 2075–2090 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pinker, S. & Jackendoff, R. The faculty of language: what’s special about it? Cognition 95, 201–236 (2005).

    Article  PubMed  Google Scholar 

  6. Tomasello, M., Carpenter, M., Call, J., Behne, T. & Moll, H. Understanding and sharing intentions: the origins of cultural cognition. Behav. Brain Sci. 28, 675–691 (2005).

    Article  PubMed  Google Scholar 

  7. Gunturkun, O. & Ocklenburg, S. Ontogenesis of lateralization. Neuron 94, 249–263 (2017).

    Article  PubMed  Google Scholar 

  8. Vallortigara, G. The evolutionary psychology of left and right: costs and benefits of lateralization. Dev. Psychobiol. 48, 418–427 (2006).

    Article  PubMed  Google Scholar 

  9. Rogers, L. J., Zucca, P. & Vallortigara, G. Advantages of having a lateralized brain. Proc. Biol. Sci. 271, S420–S422 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dadda, M., Domenichini, A., Piffer, L., Argenton, F. & Bisazza, A. Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav. Brain Res. 206, 208–215 (2010).

    Article  PubMed  Google Scholar 

  11. Vallortigara, G. Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang. 73, 189–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Vallortigara, G. & Rogers, L. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589 (2005).

  13. Ringo, J. L., Doty, R. W., Demeter, S. & Simard, P. Y. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4, 331–343 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Kong, X. Z. et al. Large-scale phenomic and genomic analysis of brain asymmetrical skew. Cereb. Cortex 31, 4151–4168 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xiang, L., Crow, T. & Roberts, N. Cerebral torque is human specific and unrelated to brain size. Brain Struct. Funct. 224, 1141–1150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao, L., Matloff, W., Shi, Y., Cabeen, R. P. & Toga, A. W. Mapping complex brain torque components and their genetic architecture and phenomic associations in 24,112 individuals. Biol. Psychiatry 91, 753–768 (2022).

    Article  PubMed  Google Scholar 

  17. Li, X., Crow, T. J., Hopkins, W. D., Gong, Q. & Roberts, N. Human torque is not present in chimpanzee brain. Neuroimage 165, 285–293 (2018).

    Article  PubMed  Google Scholar 

  18. Bear, D., Schiff, D., Saver, J., Greenberg, M. & Freeman, R. Quantitative analysis of cerebral asymmetries. Fronto-occipital correlation, sexual dimorphism and association with handedness. Arch. Neurol. 43, 598–603 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Barrick, T. R. et al. Automatic analysis of cerebral asymmetry: an exploratory study of the relationship between brain torque and planum temporale asymmetry. Neuroimage 24, 678–691 (2005).

    Article  PubMed  Google Scholar 

  20. Shapleske, J., Rossell, S. L., Woodruff, P. W. & David, A. S. The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res. Brain Res. Rev. 29, 26–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Nakada, T., Fujii, Y., Yoneoka, Y. & Kwee, I. L. Planum temporale: where spoken and written language meet. Eur. Neurol. 46, 121–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Middleton, F. A. & Strick, P. L. Cerebellar projections to the prefrontal cortex of the primate. J. Neurosci. 21, 700–712 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palesi, F. et al. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Sci. Rep. 7, 12841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neubauer, S., Gunz, P., Scott, N. A., Hublin, J. J. & Mitteroecker, P. Evolution of brain lateralization: a shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. Sci. Adv. 6, eaax9935 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hou, L. et al. Measurement of sylvian fissure asymmetry and occipital bending in humans and pan troglodytes. Neuroimage 184, 855–870 (2019).

    Article  PubMed  Google Scholar 

  26. Shaywitz, B. A. et al. Sex differences in the functional organization of the brain for language. Nature 373, 607–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Voyer, D. On the magnitude of laterality effects and sex differences in functional lateralities. Laterality 1, 51–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Voyer, D., Voyer, S. & Bryden, M. P. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol. Bull. 117, 250–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Chance, S. A. & Crow, T. J. Distinctively human: cerebral lateralisation and language in Homo sapiens. J. Anthropol. Sci. 85, 83–100 (2007).

    Google Scholar 

  30. Badzakova-Trajkov, G., Häberling, I. S., Roberts, R. P. & Corballis, M. C. Cerebral asymmetries: complementary and independent processes. PLoS ONE 5, e9682 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Corballis, M. C. Language evolution: a changing perspective. Trends Cogn. Sci. 21, 229–236 (2017).

    Article  PubMed  Google Scholar 

  32. Tomasello, M. The human adaptation for culture. Annu. Rev. Anthropol. 28, 509–529 (1999).

    Article  Google Scholar 

  33. Vaesen, K. The cognitive bases of human tool use. Behav. Brain Sci. 35, 203–218 (2012).

    Article  PubMed  Google Scholar 

  34. Tomasello, M. & Call, J. Thirty years of great ape gestures. Anim. Cogn. 22, 461–469 (2019).

    Article  PubMed  Google Scholar 

  35. Thibault, S. et al. Tool use and language share syntactic processes and neural patterns in the basal ganglia. Science 374, eabe0874 (2021).

    Article  PubMed  Google Scholar 

  36. Muret, D. et al. Touch improvement at the hand transfers to the face. Curr. Biol. 24, R736–R737 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Vyas, S. et al. Neural population dynamics underlying motor learning transfer. Neuron 97, 1177–1186 e1173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dahlin, E., Neely, A. S., Larsson, A., Backman, L. & Nyberg, L. Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Sha, Z. et al. Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc. Natl Acad. Sci. USA 118, e2113095118 (2021).

  40. Vingerhoets, G. Phenotypes in hemispheric functional segregation? Perspectives and challenges. Phys. Life Rev. 30, 1–18 (2019).

    Article  PubMed  Google Scholar 

  41. Chari, T., Banerjee, J. & Pachter, L. The specious art of single-cell genomics. Preprint at bioRxiv https://doi.org/10.1101/2021.08.25.457696 (2021).

  42. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424 (2018).

    Article  PubMed  Google Scholar 

  43. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herbert, M. R. et al. Abnormal asymmetry in language association cortex in autism. Ann. Neurol. 52, 588–596 (2002).

    Article  PubMed  Google Scholar 

  45. Steinmetz, H. Structure, functional and cerebral asymmetry: in vivo morphometry of the planum temporale. Neurosci. Biobehav. Rev. 20, 587–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Spreng, R. N. et al. The default network of the human brain is associated with perceived social isolation. Nat. Commun. 11, 1–11 (2020).

    Article  Google Scholar 

  47. Schurz, M. et al. Variability in brain structure and function reflects lack of peer support. Cereb. Cortex 31, 4612–4627 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

  49. Diaz-Papkovich, A., Anderson-Trocmé, L., Ben-Eghan, C. & Gravel, S. UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genet. 15, e1008432 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  51. Gerbrands, J. J. On the relationships between SVD, KLT and PCA. Pattern Recognit. 14, 375–381 (1981).

    Article  Google Scholar 

  52. Paul, L. K. et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci. 8, 287–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kuhn, H. W. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955).

    Article  Google Scholar 

  54. Millard, L. A. C., Davies, N. M., Gaunt, T. R., Davey Smith, G. & Tilling, K. Software application profile: PHESANT: a tool for performing automated phenome scans in UK Biobank. Int. J. Epidemiol. 47, 29–35 (2018).

    Article  PubMed  Google Scholar 

  55. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    Google Scholar 

  56. Sha, Z. et al. The genetic architecture of structural left-right asymmetry of the human brain. Nat. Hum. Behav. 5, 1226–1239 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Raizada, R. D., Richards, T. L., Meltzoff, A. & Kuhl, P. K. Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage 40, 1392–1401 (2008).

    Article  PubMed  Google Scholar 

  58. Genovese, C. R., Lazar, N. A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Brain Canada Foundation, through the Canada Brain Research Fund, with the financial support of Health Canada, National Institutes of Health (grant nos. NIH R01 AG068563A and NIH R01 R01DA053301-01A1 to D.B.), the Canadian Institute of Health Research (grant nos. CIHR 438531 and CIHR 470425 to D.B.), the Healthy Brains Healthy Lives initiative (Canada First Research Excellence fund to D.B.), Google (Research Award, Teaching Award to D.B.) and by the CIFAR Artificial Intelligence Chairs programme (Canada Institute for Advanced Research to D.B.).

The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.S. and D.B. conceived, executed and wrote the paper. All authors analysed the data and edited the manuscript.

Corresponding author

Correspondence to Danilo Bzdok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Xiang-Zhen Kong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Table 1.

Reporting summary

Supplementary Data Fig. 1

Statistical source data of UMAP stability test.

Supplementary Data Fig. 2

Statistical source data of explained variance permutation tests; feature contribution of top 25 asymmetry patterns.

Supplementary Data Fig. 3

Statistical source data of bootstrap robustness test + permutation testing and explained variance permutation tests.

Supplementary Data Fig. 4

Comparison of number of phenotypic hits on a regional versus asymmetry pattern-based approach.

Supplementary Data Fig. 5

SVD-based non-parametric permutation test for consistent handedness-based asymmetry pattern deviations.

Supplementary Data Fig. 6

SVD-based non-parametric permutation test for consistent sex-based asymmetry pattern deviations.

Supplementary Data Fig. 7

SVD-Based non-parametric permutation test for consistent IQ-based asymmetry pattern deviations.

Supplementary Data Table 1

Effect of sex and age on asymmetry pattern expression ANOVA results.

Source data

Source Data Fig. 1

UMAP 1+2 coordinates; absolute average lateralization index.

Source Data Fig. 2

Asymmetry pattern 1 feature contributions; Manhattan plot; age-sex graph; representative brain feature measures.

Source Data Fig. 3

Asymmetry pattern 2 feature contributions; Manhattan plot; age-sex graph; representative brain feature measures.

Source Data Fig. 4

Asymmetry pattern 3 feature contributions; Manhattan plot; age-sex graph; representative brain feature measures.

Source Data Fig. 5

Asymmetry pattern 4 feature contributions; Manhattan plot; age-sex graph; representative brain feature measures.

Source Data Fig. 6

Regional non-parametric permutation test for consistent handedness-based asymmetry deviations.

Source Data Fig. 7

Regional non-parametric permutation test for consistent sex-based asymmetry deviations.

Source Data Fig. 8

Regional non-parametric permutation test for consistent IQ-based asymmetry deviations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saltoun, K., Adolphs, R., Paul, L.K. et al. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat Hum Behav 7, 251–268 (2023). https://doi.org/10.1038/s41562-022-01461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01461-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing