Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developmental differences in memory reactivation relate to encoding and inference in the human brain

Abstract

Despite the fact that children can draw on their memories to make novel inferences, it is unknown whether they do so through the same neural mechanisms as adults. We measured memory reinstatement as participants aged 7–30 years learned new, related information. While adults brought memories to mind throughout learning, adolescents did so only transiently, and children not at all. Analysis of trial-wise variability in reactivation showed that discrepant neural mechanisms—and in particular, what we interpret as suppression of interfering memories during learning in early adolescence—are nevertheless beneficial for later inference at each developmental stage. These results suggest that while adults build integrated memories well-suited to informing inference directly, children and adolescents instead must rely on separate memories to be individually referenced at the time of inference decisions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental task.
Fig. 2: Task performance.
Fig. 3: Perception and memory reactivation decoding analyses.
Fig. 4: Memory reactivation decoding results.
Fig. 5: fMRI activation varies as a function of reactivation on preceding study repetition.

Data availability

The data that support the findings of this study are available on the Open Science Framework (https://osf.io/hg6wf/)132.

Code availability

The custom code that supports the findings of this study is available on the Open Science Framework (https://osf.io/hg6wf/)132.

References

  1. 1.

    Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Schlichting, M. L. & Preston, A. R. Memory integration: neural mechanisms and implications for behavior. Curr. Opin. Behav. Sci. 1, 1–8 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal–midbrain encoding of overlapping events. Neuron 60, 378–389 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Schlichting, M. L., Mumford, J. A. & Preston, A. R. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nat. Commun. 6, 8151 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Schlichting, M. L. & Preston, A. R. Hippocampal–medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiol. Learn. Mem. 134, 91–106 (2016).

    PubMed  Article  Google Scholar 

  6. 6.

    Zeithamova, D., Dominick, A. L. & Preston, A. R. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75, 168–179 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Spalding, K. N. et al. Ventromedial prefrontal cortex is necessary for normal associative inference and memory integration. J. Neurosci. 38, 2501–2517 (2018).

    Article  Google Scholar 

  8. 8.

    Zeithamova, D. & Preston, A. R. Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. J. Neurosci. 30, 14676–14684 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Varga, N. L. & Bauer, P. J. Using event-related potentials to inform the neurocognitive processes underlying knowledge extension through memory integration. J. Cogn. Neurosci. 29, 1932–1949 (2017).

    PubMed  Article  Google Scholar 

  10. 10.

    Kuhl, B. A., Shah, A. T., DuBrow, S. & Wagner, A. D. Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nat. Neurosci. 13, 501–506 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Banino, A., Koster, R., Hassabis, D. & Kumaran, D. Retrieval-based model accounts for striking profile of episodic memory and generalization. Sci. Rep. 6, 31330 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Zeithamova, D. & Preston, A. R. Temporal proximity promotes integration of overlapping events. J. Cogn. Neurosci. 29, 1311–1323 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Kumaran, D. & McClelland, J. L. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol. Rev. 119, 573–616 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Bauer, P. J. & San Souci, P. Going beyond the facts: young children extend knowledge by integrating episodes. J. Exp. Child Psychol. 107, 452–465 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Bauer, P. J., Cronin-Golomb, L. M., Porter, B. M., Jaganjac, A. & Miller, H. E. Integration of memory content in adults and children: developmental differences in task conditions and functional consequences. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0000996 (2020).

  16. 16.

    Schlichting, M. L., Guarino, K. F., Schapiro, A. C., Turk-Browne, N. B. & Preston, A. R. Hippocampal structure predicts statistical learning and associative inference abilities during development. J. Cogn. Neurosci. 29, 37–51 (2017).

    PubMed  Article  Google Scholar 

  17. 17.

    Shing, Y. L. et al. Integrating across memory episodes: developmental trends. PLoS ONE 14, e0215848 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Bauer, P. J., Varga, N. L., King, J. E., Nolen, A. M. & White, E. A. Semantic elaboration through integration: hints both facilitate and inform the process. J. Cogn. Dev. 16, 351–369 (2015).

    Article  Google Scholar 

  19. 19.

    Krumm, S., Ziegler, M. & Buehner, M. Reasoning and working memory as predictors of school grades. Learn. Individ. Differ. 18, 248–257 (2008).

    Article  Google Scholar 

  20. 20.

    Varga, N. L., Esposito, A. G. & Bauer, P. J. Cognitive correlates of memory integration across development: explaining variability in an educationally relevant phenomenon. J. Exp. Psychol. Gen. 148, 739–762 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. 262, 23–81 (1971).

    CAS  Google Scholar 

  22. 22.

    McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Article  Google Scholar 

  23. 23.

    Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    PubMed  Article  Google Scholar 

  24. 24.

    Kuhl, B. A., Johnson, M. K. & Chun, M. M. Dissociable neural mechanisms for goal-directed versus incidental memory reactivation. J. Neurosci. 33, 16099–16109 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Paz-Alonso, P. M., Ghetti, S., Matlen, B. J., Anderson, M. C. & Bunge, S. A. Memory suppression is an active process that improves over childhood. Front. Hum. Neurosci. 3, 24 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Gogtay, N. et al. Dynamic mapping of normal human hippocampal development. Hippocampus 16, 664–672 (2006).

    PubMed  Article  Google Scholar 

  27. 27.

    Langnes, E. et al. Anterior and posterior hippocampus macro- and microstructure across the lifespan in relation to memory—a longitudinal study. Hippocampus https://doi.org/10.1002/hipo.23189 (2020).

  28. 28.

    Demaster, D. M., Pathman, T., Lee, J. K. & Ghetti, S. Structural development of the hippocampus and episodic memory: developmental differences along the anterior/posterior axis. Cereb. Cortex 24, 3036–3045 (2013).

    PubMed  Article  Google Scholar 

  29. 29.

    Paz-Alonso, P. M., Ghetti, S., Donohue, S. E., Goodman, G. S. & Bunge, S. A. Neurodevelopmental correlates of true and false recognition. Cereb. Cortex 18, 2208–2216 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Maril, A. et al. Developmental fMRI study of episodic verbal memory encoding in children. Neurology 75, 2110–2116 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B. & Luna, B. Development of hippocampal–prefrontal cortex interactions through adolescence. Cereb. Cortex 30, 1548–1558 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  32. 32.

    Menon, V., Boyett-Anderson, J. M. & Reiss, A. L. Maturation of medial temporal lobe response and connectivity during memory encoding. Cogn. Brain Res. 25, 379–385 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    Sowell, E. R. et al. Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315 (2003).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Ackerman, B. P. Retrieval variability: the inefficient use of retrieval cues by young children. J. Exp. Child Psychol. 33, 413–428 (1982).

    Article  Google Scholar 

  35. 35.

    Ackerman, B. P. Children’s use of context and category cues to retrieve episodic information from memory. J. Exp. Child Psychol. 40, 420–438 (1985).

    Article  Google Scholar 

  36. 36.

    DeMaster, D., Coughlin, C. & Ghetti, S. Retrieval flexibility and reinstatement in the developing hippocampus. Hippocampus https://doi.org/10.1002/hipo.22538 (2015).

  37. 37.

    Uddin, L. Q., Supekar, K. S., Ryali, S. & Menon, V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J. Neurosci. 31, 18578–18589 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Qin, S. et al. Hippocampal–neocortical functional reorganization underlies children’s cognitive development. Nat. Neurosci. 17, 1263–1269 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Larsen, B. & Luna, B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 94, 179–195 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Murty, V., Calabro, F. & Luna, B. The role of experience in adolescent cognitive development: integration of executive, memory, and mesolimbic systems. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.07.034 (2016).

  41. 41.

    Ghetti, S., DeMaster, D. M., Yonelinas, A. P. & Bunge, S. A. Developmental differences in medial temporal lobe function during memory encoding. J. Neurosci. 30, 9548–9556 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Pattwell, S. S., Bath, K. G., Casey, B. J., Ninan, I. & Lee, F. S. Selective early-acquired fear memories undergo temporary suppression during adolescence. Proc. Natl Acad. Sci. USA 108, 1182–1187 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Pattwell, S. S. et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat. Commun. 7, 11475 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Holliday, R. E. & Weekes, B. S. Dissociated developmental trajectories for semantic and phonological false memories. Memory 14, 624–636 (2006).

    PubMed  Article  Google Scholar 

  45. 45.

    Brainerd, C. J. & Reyna, V. F. Explaining developmental reversals in false memory: research article. Psychol. Sci. 18, 442–448 (2007).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Willoughby, K. A., Desrocher, M., Levine, B. & Rovet, J. F. Episodic and semantic autobiographical memory and everyday memory during late childhood and early adolescence. Front. Psychol. 3, 53 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Billingsley, R. L., Smith, M., Lou & McAndrews, M. P. Developmental patterns in priming and familiarity in explicit recollection. J. Exp. Child Psychol. 82, 251–277 (2002).

    PubMed  Article  Google Scholar 

  48. 48.

    Daugherty, A. M., Flinn, R. & Ofen, N. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood. Neuroimage 153, 75–85 (2017).

    PubMed  Article  Google Scholar 

  49. 49.

    Lee, J. K., Ekstrom, A. D. & Ghetti, S. Volume of hippocampal subfields and episodic memory in childhood and adolescence. Neuroimage 94, 162–171 (2014).

    PubMed  Article  Google Scholar 

  50. 50.

    Lee, J. K. et al. Changes in anterior and posterior hippocampus differentially predict item–space, item–time, and item–item memory improvement. Dev. Cogn. Neurosci. 41, 100741 (2020).

    PubMed  Article  Google Scholar 

  51. 51.

    Tamnes, C. K. et al. Regional hippocampal volumes and development predict learning and memory. Dev. Neurosci. 36, 161–174 (2014).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Keresztes, A. et al. Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. Proc. Natl Acad. Sci. USA 114, 201710654 (2017).

    Article  CAS  Google Scholar 

  53. 53.

    Demaster, D. M. & Ghetti, S. Developmental differences in hippocampal and cortical contributions to episodic retrieval. Cortex 49, 1482–1493 (2013).

    PubMed  Article  Google Scholar 

  54. 54.

    Brunec, I. K. et al. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr. Biol. 28, 2129–2135.e6 (2018).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Collin, S. H. P., Milivojevic, B. & Doeller, C. F. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 18, 1562–1564 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Bowman, C. R. & Zeithamova, D. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. J. Neurosci. 38, 2605–2614 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Callaghan, B. et al. Age-related increases in posterior hippocampal granularity are associated with remote detailed episodic memory in development. J. Neurosci. 41, 1738–1754 (2020).

    PubMed  Article  Google Scholar 

  58. 58.

    Duncan, K. D. & Schlichting, M. L. Hippocampal representations as a function of time, subregion, and brain state. Neurobiol. Learn. Mem. 153, 40–56 (2018).

    PubMed  Article  Google Scholar 

  59. 59.

    Hulbert, J. C. & Norman, K. A. Neural differentiation tracks improved recall of competing memories following interleaved study and retrieval practice. Cereb. Cortex https://doi.org/10.1093/cercor/bhu284 (2014).

  60. 60.

    Casey, B. J. Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annu. Rev. Psychol. https://doi.org/10.1146/annurev-psych-010814-015156 (2014).

  61. 61.

    Siegler, R. S. Emerging Minds: The Process of Change in Children’s Thinking. https://doi.org/10.1093/oso/9780195077872.003.0009 (Oxford Univ. Press, 1996).

  62. 62.

    Preston, A. R., Shrager, Y., Dudukovic, N. & Gabrieli, J. D. E. Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus 14, 148–152 (2004).

    PubMed  Article  Google Scholar 

  63. 63.

    Zeithamova, D., Manthuruthil, C. & Preston, A. R. Repetition suppression in the medial temporal lobe and midbrain is altered by event overlap. Hippocampus 26, 1464–1477 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    PubMed  Article  Google Scholar 

  65. 65.

    Yassa, M. A. & Stark, C. E. L. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Chanales, A. J. H., Oza, A., Favila, S. E. & Kuhl, B. A. Overlap among spatial memories triggers repulsion of hippocampal representations. Curr. Biol. 27, 2307–2317.e5 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Molitor, R. J., Sherrill, K. R., Morton, N. W., Miller, A. A. & Preston, A. R. Memory reactivation during learning simultaneously promotes dentate gyrus/CA2,3 pattern differentiation and CA1 memory integration. J. Neurosci. 41, 726–738 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Favila, S. E., Samide, R., Sweigart, S. C. & Kuhl, B. A. Parietal representations of stimulus features are amplified during memory retrieval and flexibly aligned with top-down goals. J. Neurosci. 38, 7809–7821 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Sastre, M., Wendelken, C., Lee, J. K., Bunge, S. A. & Ghetti, S. Age- and performance-related differences in hippocampal contributions to episodic retrieval. Dev. Cogn. Neurosci. 19, 42–50 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Lindberg, M. A. Is knowledge base development a necessary and sufficient condition for memory development? J. Exp. Child Psychol. 30, 401–410 (1980).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Schneider, W., Gruber, H., Gold, A. & Opwis, K. Chess expertise and memory for chess position in children and adults. J. Exp. Child Psychol. 56, 328–349 (1993).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Riggins, T. et al. Protracted hippocampal development is associated with age-related improvements in memory during early childhood. Neuroimage 174, 127–137 (2018).

    PubMed  Article  Google Scholar 

  73. 73.

    Ghetti, S. & Fandakova, Y. Neural development of memory and metamemory in childhood and adolescence: toward an integrative model of the development of episodic recollection. Annu. Rev. Dev. Psychol. 2, 365–388 (2020).

    Article  Google Scholar 

  74. 74.

    Goldsberry, M. E., Kim, J. & Freeman, J. H. Developmental changes in hippocampal associative coding. J. Neurosci. 35, 4238–4247 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Giovanello, K. S., Schnyer, D. M. & Verfaellie, M. Distinct hippocampal regions make unique contributions to relational memory. Hippocampus 19, 111–117 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Davachi, L. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16, 693–700 (2006).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Brod, G., Werkle-Bergner, M. & Shing, Y. L. The influence of prior knowledge on memory: a developmental cognitive neuroscience perspective. Front. Behav. Neurosci. 7, 139 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Shing, Y. L. & Brod, G. Effects of prior knowledge on memory: implications for education. Mind Brain Educ. 10, 153–161 (2016).

    Article  Google Scholar 

  79. 79.

    Sneider, J. T. et al. Adolescent hippocampal and prefrontal brain activation during performance of the virtual Morris water task. Front. Hum. Neurosci. 12, 238 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Ofen, N. The development of neural correlates for memory formation. Neurosci. Biobehav. Rev. 36, 1708–1717 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Shing, Y. L. et al. Episodic memory across the lifespan: the contributions of associative and strategic components. Neurosci. Biobehav. Rev. 34, 1080–1091 (2010).

    PubMed  Article  Google Scholar 

  82. 82.

    Tang, L., Shafer, A. T. & Ofen, N. Prefrontal cortex contributions to the development of memory formation. Cereb. Cortex https://doi.org/10.1093/cercor/bhx200 (2017).

  83. 83.

    Kim, G., Lewis-Peacock, J. A., Norman, K. A. & Turk-Browne, N. B. Pruning of memories by context-based prediction error. Proc. Natl Acad. Sci. USA 111, 8997–9002 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22, 1622–1627 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Carpenter, A. C. & Schacter, D. L. Flexible retrieval: when true inferences produce false memories. J. Exp. Psychol. Learn. Mem. Cogn. 43, 335–349 (2017).

    PubMed  Article  Google Scholar 

  86. 86.

    Whitaker, K. J., Vendetti, M. S., Wendelken, C. & Bunge, S. A. Neuroscientific insights into the development of analogical reasoning. Dev. Sci. 21, e12531 (2018).

    Article  Google Scholar 

  87. 87.

    Wendelken, C., Ferrer, E., Whitaker, K. J. & Bunge, S. A. Fronto-parietal network reconfiguration supports the development of reasoning ability. Cereb. Cortex https://doi.org/10.1093/cercor/bhv050 (2015).

  88. 88.

    Peterson, a, Crockett, L., Richards, M. & Boxer, A. A self-report measure of pubertal status. J. Youth Adolesc. 17, 117–133 (1988).

    Article  Google Scholar 

  89. 89.

    Achenbach, T. M. Manual for the Child Behavior Checklist/4-18 and 1991 Profile (Department of Psychiatry, Univ. of Vermont, 1991).

  90. 90.

    Derogatis, L. R. SCL-90-R: Administration, Scoring and Procedures—Manual 1 (Clinical Psychometric Research, 1977).

  91. 91.

    Wechsler, D. Wechsler Abbreviated Scale of Intelligence (Psychological Corporation, 1999).

  92. 92.

    Schlichting, M. L., Zeithamova, D. & Preston, A. R. CA1 subfield contributions to memory integration and inference. Hippocampus 24, 1248–1260 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Schlichting, M. L. & Preston, A. R. Memory reactivation during rest supports upcoming learning of related content. Proc. Natl Acad. Sci. USA 111, 15845–15850 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Bauer, P. J., Dugan, J. A., Varga, N. L. & Riggins, T. Relations between neural structures and children’s self-derivation of new knowledge through memory integration. Dev. Cogn. Neurosci. 36, 100611 (2019).

    PubMed  Article  Google Scholar 

  95. 95.

    Bauer, P. J. & Larkina, M. Realizing relevance: the influence of domain-specific information on generation of new knowledge through integration in 4- to 8-year-old children. Child Dev. 88, 247–262 (2017).

    PubMed  Article  Google Scholar 

  96. 96.

    Bauer, P. J., King, J. E., Larkina, M., Varga, N. L. & White, E. A. Characters and clues: factors affecting children’s extension of knowledge through integration of separate episodes. J. Exp. Child Psychol. 111, 681–694 (2012).

    PubMed  Article  Google Scholar 

  97. 97.

    Varga, N. L., Stewart, R. A. & Bauer, P. J. Integrating across episodes: investigating the long-term accessibility of self-derived knowledge in 4-year-old children. J. Exp. Child Psychol. 145, 48–63 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Bauer, P. J. & Jackson, F. L. Semantic elaboration: ERPs reveal rapid transition from novel to known. J. Exp. Psychol. Learn. Mem. Cogn. 41, 271–282 (2016).

    Article  Google Scholar 

  99. 99.

    Esposito, A. G. & Bauer, P. J. Building a knowledge base: predicting self-derivation through integration in 6- to 10-year-olds. J. Exp. Child Psychol. 176, 55–72 (2018).

    PubMed  Article  Google Scholar 

  100. 100.

    Varga, N. L. & Bauer, P. J. Effects of delays on 6-year-old children’s self-generation and retention of knowledge through integration. J. Exp. Child Psychol. 115, 326–341 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Esposito, A. G. & Bauer, P. J. Going beyond the lesson: self-generating new factual knowledge in the classroom. J. Exp. Child Psychol. 153, 110–125 (2017).

    PubMed  Article  Google Scholar 

  102. 102.

    Bryant, P. & Trabasso, T. Transitive inferences and memory in young children. Nature 232, 456–458 (1971).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Brainerd, C. & Kingma, J. Do children have to remember to reason? A fuzzy-trace theory of transitivity development. Dev. Rev. 4, 311–377 (1984).

    Article  Google Scholar 

  104. 104.

    Chapman, M. & Lindenberger, U. Transitivity judgments, memory for premises, and models of children’s reasoning. Dev. Rev. 12, 124–163 (1992).

    Article  Google Scholar 

  105. 105.

    Reyna, V. F. & Brainerd, C. J. Fuzzy processing in transitivity development. Ann. Oper. Res. 23, 37–63 (1990).

    Article  Google Scholar 

  106. 106.

    Staresina, B. P., Gray, J. C. & Davachi, L. Event congruency enhances episodic memory encoding through semantic elaboration and relational binding. Cereb. Cortex 19, 1198–1207 (2009).

    PubMed  Article  Google Scholar 

  107. 107.

    Liu, Z. X., Grady, C. & Moscovitch, M. Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cereb. Cortex 27, 1991–2009 (2017).

    PubMed  Google Scholar 

  108. 108.

    Reggev, N., Bein, O. & Maril, A. Distinct neural suppression and encoding effects for conceptual novelty and familiarity. J. Cogn. Neurosci. 28, 1455–1470 (2016).

    PubMed  Article  Google Scholar 

  109. 109.

    Maril, A. et al. Event congruency and episodic encoding: a developmental fMRI study. Neuropsychologia 49, 3036–3045 (2011).

    PubMed  Article  Google Scholar 

  110. 110.

    van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J. & Fernandez, G. Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J. Neurosci. 30, 15888–15894 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. 111.

    Kuperman, V., Stadthagen-Gonzalez, H. & Brysbaert, M. Age-of-acquisition ratings for 30,000 English words. Behav. Res. Methods https://doi.org/10.3758/s13428-012-0210-4 (2012).

  112. 112.

    Favila, S. E., Chanales, A. J. H. & Kuhl, B. A. Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nat. Commun. 6, 11066 (2016).

    Article  Google Scholar 

  113. 113.

    Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  Google Scholar 

  114. 114.

    Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    PubMed  Article  Google Scholar 

  115. 115.

    Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192–216 (2009).

    PubMed Central  Article  PubMed  Google Scholar 

  116. 116.

    Ghetti, S. & Bunge, S. A. Neural changes underlying the development of episodic memory during middle childhood. Dev. Cogn. Neurosci. 2, 381–395 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Townsend, E. L., Richmond, J. L., Vogel-Farley, V. K. & Thomas, K. Medial temporal lobe memory in childhood: developmental transitions. Dev. Sci. 13, 738–751 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M. & Newcombe, N. S. Hippocampal maturation drives memory from generalization to specificity. Trends Cogn. Sci. 22, 676–686 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Ghetti, S. & Angelini, L. The development of recollection and familiarity in childhood and adolescence: evidence from the dual-process signal detection model. Child Dev. 79, 339–358 (2008).

    PubMed  Article  Google Scholar 

  120. 120.

    Ofen, N. et al. Development of the declarative memory system in the human brain. Nat. Neurosci. 10, 1198–1205 (2007).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    PubMed  Article  Google Scholar 

  122. 122.

    Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).

    PubMed  Article  Google Scholar 

  123. 123.

    Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C. & Taylor, P. A. FMRI clustering in AFNI: false-positive rates redux. Brain Connect. 7, 152–171 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Mumford, J. A., Turner, B. O., Ashby, F. G. & Poldrack, R. A. Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. Neuroimage 59, 2636–2643 (2012).

    PubMed  Article  Google Scholar 

  125. 125.

    Richter, F. R., Chanales, A. J. H. & Kuhl, B. A. Predicting the integration of overlapping memories by decoding mnemonic processing states during learning. Neuroimage https://doi.org/10.1016/j.neuroimage.2015.08.051 (2015).

  126. 126.

    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018).

  127. 127.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  128. 128.

    Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. & Schmid, M. A review of spline function procedures in R. BMC Med. Res. Methodol. 19, 46 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Francis, B., Elliott, A. & Weldon, M. Smoothing group-based trajectory models through B-splines. J. Dev. Life Course Criminol. 2, 113–133 (2016).

    Article  Google Scholar 

  130. 130.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).

  131. 131.

    Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    Article  Google Scholar 

  132. 132.

    Schlichting, M. L., Guarino, K. F., Roome, H. E. & Preston, A. R. Memory reactivation modulates new encoding and impacts inference in the developing human brain. Open Science Framework https://doi.org/10.17605/OSF.IO/HG6WF (2021).

  133. 133.

    Brodeur, M. B., Dionne-Dostie, E., Montreuil, T. & Lepage, M. The Bank of Standardized Stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS ONE 5, e10773 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Brodeur, M. B., Guérard, K. & Bouras, M. Bank of Standardized Stimuli (BOSS) phase II: 930 new normative photos. PLoS ONE 9, e106953 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tran for help with stimulus development and participant recruitment, and S. Ventura, N.-H. Hue and K. Nguyen for assistance with data collection and analysis. We also thank M. Mack, D. Zeithamova, N. Varga and K. Duncan for input on statistical analyses and helpful discussions. This work was supported by the National Institutes of Health under award numbers R01 MH100121 and R21 HD083785 (A.R.P.) and by the Canada Foundation for Innovation John R. Evans Leaders Fund (grant no. 36876; M.L.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

M.L.S. and A.R.P. conceptualized the study. M.L.S., K.F.G. and H.E.R. collected the data. M.L.S. and K.F.G. analysed the data. M.L.S. drafted the paper, and all authors were involved in revising and finalizing the manuscript.

Corresponding authors

Correspondence to Margaret L. Schlichting or Alison R. Preston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Garvin Brod, Shaozheng Qin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Figs. 1–9 and Table 1.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schlichting, M.L., Guarino, K.F., Roome, H.E. et al. Developmental differences in memory reactivation relate to encoding and inference in the human brain. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01206-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing