Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The generative grammar of the brain: a critique of internally generated representations

Abstract

The past decade of progress in neurobiology has uncovered important organizational principles for network preconfiguration and neuronal selection that suggest a generative grammar exists in the brain. In this Perspective, I discuss the competence of the hippocampal neural network to generically express temporally compressed sequences of neuronal firing that represent novel experiences, which is envisioned as a form of generative neural syntax supporting a neurobiological perspective on brain function. I compare this neural competence with the hippocampal network performance that represents specific experiences with higher fidelity after new learning during replay, which is envisioned as a form of neural semantic that supports a complementary neuropsychological perspective. I also demonstrate how the syntax of network competence emerges a priori during early postnatal life and is followed by the later development of network performance that enables rapid encoding and memory consolidation. Thus, I propose that this generative grammar of the brain is essential for internally generated representations, which are crucial for the cognitive processes underlying learning and memory, prospection, and inference, which ultimately underlie our reason and representation of the world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Instructional-to-selectionist theoretical shift in immunology and neurobiology.
Fig. 2: Unified hierarchical generative grammar and coding across genetics, neurobiology and linguistics.
Fig. 3: Neural competence and neural performance in neuronal ensemble representations of the external world.
Fig. 4: Internally generated representation forms.

Similar content being viewed by others

References

  1. Locke, J. An Essay Concerning Human Understanding (Thomas Basset, 1690).

  2. Hume, D. An Enquiry Concerning Human Understanding (A. Millar, 1748).

  3. Leibniz, G. New Essays on Human Understanding (Cambridge Univ. Press, 1765).

  4. Kant, I. Critique of Pure Reason (Cambridge Univ. Press, 1781).

  5. Pauling, L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. 62, 2643–2657 (1940).

    Article  CAS  Google Scholar 

  6. Deichmann, U. Template theories, the rule of parsimony, and disregard for irreproducibility — the example of Linus Pauling’s research on antibody formation. Hist. Stud. Nat. Sci. 51, 427–467 (2021).

    Article  Google Scholar 

  7. Erlich, P. Croonian lecture: on immunity with special reference to cell life. Proc. R. Soc. Lond. 66, 424–448 (1900).

    Article  Google Scholar 

  8. Jerne, N. K. The natural-selection theory of antibody formation. Proc. Natl Acad. Sci. USA 41, 849–857 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Talmage, D. W. Diversity of antibodies. J. Cell Physiol. Suppl. 50, 229–246 (1957).

    Article  CAS  PubMed  Google Scholar 

  10. Burnet, F. M. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J. Clin. 26, 119–221 (1957).

    Article  Google Scholar 

  11. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Landsteiner, K. The Specificity of Serological Reactions (Howard Univ. Press, 1947).

  13. Jerne, N. K. The generative grammar of the immune system. Science 229, 1057–1059 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Darwin, C. On the Origin of Species (John Murray, 1859).

  15. Edelman, G. M., Benacerraf, B., Ovary, Z. & Poulik, M. D. Structural differences among antibodies of different specificities. Proc. Natl Acad. Sci. USA 47, 1751–1758 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edelman, G. Neural Darwinism: The Theory Of Neuronal Group Selection (Basic Books, 1987).

  17. Barlow, H. B. Neuroscience: a new era? Nature 331, 571 (1988).

    Article  Google Scholar 

  18. Crick, F. Neural edelmanism. Trends Neurosci. 12, 240–248 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Dragoi, G. & Tonegawa, S. Distinct preplay of multiple novel spatial experiences in the rat. Proc. Natl Acad. Sci. USA 110, 9100–9105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dragoi, G. & Tonegawa, S. Selection of preconfigured cell assemblies for representation of novel spatial experiences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20120522 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    Article  PubMed  Google Scholar 

  25. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

  26. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  CAS  PubMed  Google Scholar 

  27. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex.Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Wills, T. J., Lever, C., Cacucci, F., Burgess, N. & O’Keefe, J. Attractor dynamics in the hippocampal representation of the local environment. Science 308, 873–876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirase, H., Leinekugel, X., Czurko, A., Csicsvari, J. & Buzsaki, G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc. Natl Acad. Sci. USA 98, 9386–9390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Moser, E. I., Krobert, K. A., Moser, M. B. & Morris, R. G. Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038–2042 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Dragoi, G., Harris, K. D. & Buzsaki, G. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39, 843–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nat. Neurosci. 2, 597–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Pavlides, C. & Winson, J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J. Neurosci. 9, 2907–2918 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buzsaki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Logothetis, N. K. et al. Hippocampal-cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Dragoi, G. Cell assemblies, sequences and temporal coding in the hippocampus. Curr. Opin. Neurobiol. 64, 111–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silva, D., Feng, T. & Foster, D. J. Trajectory events across hippocampal place cells require previous experience. Nat. Neurosci. 18, 1772–1779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Fernandez-Ruiz, A. et al. Long-duration hippocampal sharp wave ripples improve memory. Science 364, 1082–1086 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luczak, A., Bartho, P. & Harris, K. D. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Penn, A. A. & Shatz, C. J. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr. Res. 45, 447–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  61. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsaki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007).

    Article  PubMed  Google Scholar 

  64. Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Schacter, D. L., Addis, D. R. & Buckner, R. L. Episodic simulation of future events: concepts, data, and applications. Ann. N. Y. Acad. Sci. 1124, 39–60 (2008).

    Article  PubMed  Google Scholar 

  66. Bar, M. The proactive brain: memory for predictions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1235–1243 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pezzulo, G., Kemere, C. & van der Meer, M. A. A. Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Ann. N. Y. Acad. Sci. 1396, 144–165 (2017).

    Article  PubMed  Google Scholar 

  68. Spano, G. et al. Dreaming with hippocampal damage. eLife 9, e56211 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schobel, S. A. et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78, 81–93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tamminga, C. A., Stan, A. D. & Wagner, A. D. The hippocampal formation in schizophrenia. Am. J. Psychiatry 167, 1178–1193 (2010).

    Article  PubMed  Google Scholar 

  71. Nakazawa, K. et al. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38, 305–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Dragoi, G. & Tonegawa, S. Development of schemas revealed by prior experience and NMDA receptor knock-out. eLife 2, e01326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Farooq, U., Sibille, J., Liu, K. & Dragoi, G. Strengthened temporal coordination within pre-existing sequential cell assemblies supports trajectory replay. Neuron 103, 719–733.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, K., Sibille, J. & Dragoi, G. Generative predictive codes by multiplexed hippocampal neuronal tuplets. Neuron 99, 1329–1341.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, K., Sibille, J. & Dragoi, G. Preconfigured patterns are the primary driver of offline multi-neuronal sequence replay. Hippocampus 29, 275–283 (2019).

    Article  PubMed  Google Scholar 

  76. Grosmark, A. D. & Buzsaki, G. Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351, 1440–1443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olafsdottir, H. F., Barry, C., Saleem, A. B., Hassabis, D. & Spiers, H. J. Hippocampal place cells construct reward related sequences through unexplored space. eLife 4, e06063 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes experience. Cell 178, 640–652.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, K., Sibille, J. & Dragoi, G. Orientation selectivity enhances context generalization and generative predictive coding in the hippocampus. Neuron 109, 3688–3698.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Crick, F. H., Barnett, L., Brenner, S. & Watts-Tobin, R. J. General nature of the genetic code for proteins. Nature 192, 1227–1232 (1961).

    Article  CAS  PubMed  Google Scholar 

  81. Dragoi, G. & Buzsaki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Diba, K. & Buzsaki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dragoi, G. Internal operations in the hippocampus: single cell and ensemble temporal coding. Front. Syst. Neurosci. 7, 46 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K. & Dupret, D. Hippocampal offline reactivation consolidates recently formed cell assembly patterns during sharp wave-ripples. Neuron 92, 968–974 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. van der Meer, M. A. A., Kemere, C. & Diba, K. Progress and issues in second-order analysis of hippocampal replay. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190238 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Monaco, J. D., Rao, G., Roth, E. D. & Knierim, J. J. Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat. Neurosci. 17, 725–731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Buzsaki, G. The Brain from Inside Out (Oxford Univ. Press, 2019).

  91. Vaz, A. P., Wittig, J. H. Jr., Inati, S. K. & Zaghloul, K. A. Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex. Nat. Commun. 14, 4723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hall, A. F. & Wang, D. V. The two tales of hippocampal sharp-wave ripple content: the rigid and the plastic. Prog. Neurobiol. 221, 102396 (2023).

    Article  PubMed  Google Scholar 

  93. Harvey, R. E., Robinson, H. L., Liu, C., Oliva, A. & Fernandez-Ruiz, A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 111, 2076–2090.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Geiller, T., Fattahi, M., Choi, J. S. & Royer, S. Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat. Commun. 8, 14531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chomsky, N. Aspects of the Theory of Syntax (MIT Press, 1965).

  96. Mueller-Vollmer, K. & Messling, M. in The Stanford Encyclopedia of Philosophy (Summer 2022 Edition) (Ed. Zalta, E. N.) (2022).

  97. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsaki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I. & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Churchland, P. S. & Sejnowski, T. The Computational Brain (MIT Press, 1992).

  100. Bullock, T. H. et al. Neuroscience. The neuron doctrine, redux. Science 310, 791–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Dragoi, G., Carpi, D., Recce, M., Csicsvari, J. & Buzsaki, G. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J. Neurosci. 19, 6191–6199 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tingley, D. & Buzsaki, G. Routing of hippocampal ripples to subcortical structures via the lateral septum. Neuron 105, 138–149.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. O’Neill, J., Boccara, C. N., Stella, F., Schoenenberger, P. & Csicsvari, J. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science 355, 184–188 (2017).

    Article  PubMed  Google Scholar 

  105. Shin, J. D., Tang, W. & Jadhav, S. P. Dynamics of awake hippocampal-prefrontal replay for spatial learning and memory-guided decision making. Neuron 104, 1110–1125.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Buzsaki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Euston, D. R., Tatsuno, M. & McNaughton, B. L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Olafsdottir, H. F., Carpenter, F. & Barry, C. Coordinated grid and place cell replay during rest. Nat. Neurosci. 19, 792–794 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Markowitz, J. E. et al. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature 614, 108–117 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van der Meer, M. A., Johnson, A., Schmitzer-Torbert, N. C. & Redish, A. D. Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67, 25–32 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Amador, A., Perl, Y. S., Mindlin, G. B. & Margoliash, D. Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature 495, 59–64 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Chambers, B. & MacLean, J. N. Higher-order synaptic interactions coordinate dynamics in recurrent networks. PLoS Comput. Biol. 12, e1005078 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and recalling cortical ensembles. Science 353, 691–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van der Meer, M. A. A., Carey, A. A. & Tanaka, Y. Optimizing for generalization in the decoding of internally generated activity in the hippocampus. Hippocampus 27, 580–595 (2017).

    Article  PubMed  Google Scholar 

  116. Genzel, L. et al. A consensus statement: defining terms for reactivation analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20200001 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Diba, K., Maboudi, K., Giri, B., Miyawaki, H. & Kemere, C. Retuning of hippocampal representations during sleep. Preprint at Res. Square https://doi.org/10.21203/rs.3.rs-2191626/v1 (2022).

  118. MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Heeger, D. J. Theory of cortical function. Proc. Natl Acad. Sci. USA 114, 1773–1782 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Teufel, C. & Fletcher, P. C. Forms of prediction in the nervous system. Nat. Rev. Neurosci. 21, 231–242 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Eichenbaum, H. & Cohen, N. J. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 83, 764–770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Muller, R. U., Stead, M. & Pach, J. The hippocampus as a cognitive graph. J. Gen. Physiol. 107, 663–694 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gupta, A. S., van der Meer, M. A., Touretzky, D. S. & Redish, A. D. Segmentation of spatial experience by hippocampal theta sequences. Nat. Neurosci. 15, 1032–1039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Drieu, C., Todorova, R. & Zugaro, M. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 362, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y., Romani, S., Lustig, B., Leonardo, A. & Pastalkova, E. Theta sequences are essential for internally generated hippocampal firing fields. Nat. Neurosci. 18, 282–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Farooq, U. & Dragoi, G. Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science 363, 168–173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Muessig, L., Lasek, M., Varsavsky, I., Cacucci, F. & Wills, T. J. Coordinated emergence of hippocampal replay and theta sequences during post-natal development. Curr. Biol. 29, 834–840.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Travaglia, A., Bisaz, R., Sweet, E. S., Blitzer, R. D. & Alberini, C. M. Infantile amnesia reflects a developmental critical period for hippocampal learning. Nat. Neurosci. 19, 1225–1233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bessieres, B., Travaglia, A., Mowery, T. M., Zhang, X. & Alberini, C. M. Early life experiences selectively mature learning and memory abilities. Nat. Commun. 11, 628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Donato, F. et al. The ontogeny of hippocampus-dependent memories. J. Neurosci. 41, 920–926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stark, E., Roux, L., Eichler, R. & Buzsaki, G. Local generation of multineuronal spike sequences in the hippocampal CA1 region. Proc. Natl Acad. Sci. USA 112, 10521–10526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oliva, A., Fernandez-Ruiz, A., Leroy, F. & Siegelbaum, S. A. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature 587, 264–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  139. Huszar, R., Zhang, Y., Blockus, H. & Buzsaki, G. Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis. Nat. Neurosci. 25, 1201–1212 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Cavalieri, D. et al. CA1 pyramidal cell diversity is rooted in the time of neurogenesis. eLife 10, e69270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gava, G. P. et al. Integrating new memories into the hippocampal network activity space. Nat. Neurosci. 24, 326–330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Azizi, A. H., Wiskott, L. & Cheng, S. A computational model for preplay in the hippocampus. Front. Comput. Neurosci. 7, 161 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Leibold, C. A model for navigation in unknown environments based on a reservoir of hippocampal sequences. Neural Netw. 124, 328–342 (2020).

    Article  PubMed  Google Scholar 

  144. Haldane, J. The truth about death. J. Genet. 58, 463–464 (1963).

    Google Scholar 

  145. Berners-Lee, A. et al. Hippocampal replays appear after a single experience and incorporate greater detail with more experience. Neuron 110, 1829–1842.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abraham, W. C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Jedlicka, P., Tomko, M., Robins, A. & Abraham, W. C. Contributions by metaplasticity to solving the catastrophic forgetting problem. Trends Neurosci. 45, 656–666 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Morris, R. G. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829–2846 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ramsaran, A. I. et al. A shift in the mechanisms controlling hippocampal engram formation during brain maturation. Science 380, 543–551 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Poo, M. M. et al. What is memory? The present state of the engram. BMC Biol. 14, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Han, J. H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. McKenzie, S., Robinson, N. T., Herrera, L., Churchill, J. C. & Eichenbaum, H. Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema. J. Neurosci. 33, 10243–10256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. El-Gaby, M. et al. An emergent neural coactivity code for dynamic memory. Nat. Neurosci. 24, 694–704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roux, L., Hu, B., Eichler, R., Stark, E. & Buzsaki, G. Sharp wave ripples during learning stabilize the hippocampal spatial map. Nat. Neurosci. 20, 845–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Farooq, U. & Dragoi, G. Geometry of space sculpts hippocampal sequential place cell assemblies during development. Soc. Neurosci. Abstr. 324, 15 (2022).

    Google Scholar 

  160. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Sleep inspires insight. Nature 427, 352–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Dusek, J. A. & Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. Proc. Natl Acad. Sci. USA 94, 7109–7114 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Aru, J., Druke, M., Pikamae, J. & Larkum, M. E. Mental navigation and the neural mechanisms of insight. Trends Neurosci. 46, 100–109 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Thakral, P. P., Barberio, N. M., Devitt, A. L. & Schacter, D. L. Constructive episodic retrieval processes underlying memory distortion contribute to creative thinking and everyday problem solving. Mem. Cogn. 51, 1125–1144 (2022).

    Article  Google Scholar 

  167. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Schopenhauer, A. The World as Will and Representation (Dover, 1969).

  169. Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks all the members of the Dragoi lab for their contribution to the primary research work that led to some of the findings included in this opinion. G.D. discloses support for the research of this work from the NIH grants R01NS104917, R01MH121372 and R35NS132342. The funding sources had no involvement in the content of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed all aspects of the article.

Corresponding author

Correspondence to George Dragoi.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Sheena Josselyn, Caswell Barry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Backbone

Robust pre-existing organization of neuronal (sequential) activity, on the framework of which new information is encoded.

Blank slate

An original state of neural networks (or the mind) believed to be devoid of any functional organization, which will be configured only because of direct experience. Also known as tabula rasa.

Cell assemblies

Groups of interconnected neurons repeatedly co-activated within short timeframes (of a few tens of milliseconds) thought to underlie an associative representational code.

Generative grammar

A set of organizational rules that can explain current patterns and predict the expression of future new patterns from (re)combination of existing elements.

Morpheme

The smallest unit of semantic meaning within a word.

Multi-neuronal primitive sequence

Overall probabilistic organization of neurons into one generic or backbone neuronal sequence characteristic to a network that is mostly preserved across experiences.

Network preconfiguration

A state of neural network functional organization often related to, constraining or predictive of future patterns of network activation; in contrast to a blank slate.

Neural code

Patterns of neuronal and neuronal ensemble activity believed to encode and represent specific stimuli or states, which could be decoded by a downstream entity.

Neural grammar

A set of hierarchical organization rules for the generation of current and future novel neural patterns from (re)combination of pre-existing cellular and circuit neural motifs.

Neural semantic

A representational feature gained by specific neural patterns for the depiction of specific objects or events from the external world, often interpreted as a neural code.

Neural syntax

A set of rules for the combinatorial hierarchical organization of the neuronal activity of individual neurons into cell assemblies and short circuit motifs towards extended neural sequences.

Neurobiological

A level of explanation of neuronal ensemble activity with a focus on the rules for the combinatorial organization of neural activity (neural syntax).

Neuro-codons

Recurring short sequence motifs of 3 ± 1 neurons, also called neuronal tuplets, that are further multiplexed into extended neuronal sequences; part of neural syntax.

Neuronal selection

A theory in neuroscience postulating that patterns of neural activity are selected from a larger pre-existing repertoire, rather than exclusively created de novo, during a novel experience.

Neuropsychological

A level of explanation of neuronal ensemble activity with a focus on the representational value of neuronal activity as a form of neural semantic or code.

Phoneme

The smallest perceptually distinct unit of sound that composes a word (and can separate it from another word), often represented by one letter or a small cluster of letters.

Place cells

A neuron type functionally tuned primarily to the position of an animal in external space; most abundant in the hippocampus.

Plasticity

The property of neural activity of being modified within normal ranges owing to a certain experience, lasting for a variable amount of time after the experience has ended.

Plasticity in replay

Recent experience-related changes in sequence replay that increase its fidelity, incidence or extent in depicting the experience compared with preplay (plasticity in replay over preplay). Considered a form of gain in network performance, not a new competence.

Preplay

Significant correlations between sequential patterns of neuronal ensemble activity during a novel (spatial) experience and those expressed during the preceding sleep or rest, prospective in nature. Demonstrates that preconfigured network patterns contribute to encoding of future novel experiences.

Pre-representations

Decoded neuronal ensemble activities during sleep and rest that resemble virtual trajectories through subsequently explored novel spaces.

Universal biological grammar

A set of rules for the hierarchical organization of elements into increasingly complex assemblies with added meaning, common across different aspects of biology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragoi, G. The generative grammar of the brain: a critique of internally generated representations. Nat. Rev. Neurosci. 25, 60–75 (2024). https://doi.org/10.1038/s41583-023-00763-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00763-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing