Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biased evaluations emerge from inferring hidden causes

Subjects

Abstract

How do we evaluate a group of people after a few negative experiences with some members but mostly positive experiences otherwise? How do rare experiences influence our overall impression? We show that rare events may be overweighted due to normative inference of the hidden causes that are believed to generate the observed events. We propose a Bayesian inference model that organizes environmental statistics by combining similar events and separating outlying observations. Relying on the model’s inferred latent causes for group evaluation overweights rare or variable events. We tested the model’s predictions in eight experiments where participants observed a sequence of social or non-social behaviours and estimated their average. As predicted, estimates were biased toward sparse events when estimating after seeing all observations, but not when tracking a summary value as observations accrued. Our results suggest that biases in evaluation may arise from inferring the hidden causes of group members’ behaviours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hypothetical latent structure and experimental designs.
Fig. 2: Results of experiment 1A.
Fig. 3: Results of experiment 1B.
Fig. 4: Experimental design and results of experiment 2.

Data availability

The data that support the findings of this study are available at https://osf.io/fdcvw.

Code availability

Custom code that supports the findings of this study is available from the corresponding author upon request.

References

  1. 1.

    Rozin, P. & Royzman, E. B. Negativity bias, negativity dominance, and contagion. Personal. Soc. Psychol. Rev. 5, 296–320 (2001).

    Article  Google Scholar 

  2. 2.

    Fiske, S. T. Attention and weight in person perception: the impact of negative and extreme behavior. J. Pers. Soc. Psychol. 38, 889–906 (1980).

    Article  Google Scholar 

  3. 3.

    Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    CAS  Article  Google Scholar 

  4. 4.

    Mende-Siedlecki, P., Cai, Y. & Todorov, A. The neural dynamics of updating person impressions. Soc. Cogn. Affect. Neurosci. 8, 623–631 (2013).

    Article  Google Scholar 

  5. 5.

    Alves, H., Koch, A. S. & Unkelbach, C. The ‘common good’ phenomenon: why similarities are positive and differences are negative. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0000276 (2017).

    Article  PubMed  Google Scholar 

  6. 6.

    Unkelbach, C., Fiedler, K., Bayer, M., Stegmüller, M. & Danner, D. Why positive information is processed faster: the density hypothesis. J. Pers. Soc. Psychol. 95, 36–49 (2008).

    Article  Google Scholar 

  7. 7.

    Alves, H. et al. A density explanation of valence asymmetries in recognition memory. Mem. Cogn. 43, 896–909 (2015).

    Article  Google Scholar 

  8. 8.

    Alves, H., Koch, A. S. & Unkelbach, C. A cognitive–ecological explanation of intergroup biases. Psychol. Sci. 29, 1126–1133 (2018).

    Article  Google Scholar 

  9. 9.

    Courville, A. C., Daw, N. D. & Touretzky, D. S. in Advances in Neural Information Processing Systems 17 (eds Saul, L., Weiss, Y. & Bottou, L.) 313–320 (MIT Press, 2005).

  10. 10.

    Gershman, S. J., Blei, D. M. & Niv, Y. Context, learning, and extinction. Psychol. Rev. 117, 197–209 (2010).

    Article  Google Scholar 

  11. 11.

    Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr. Opin. Neurobiol. 20, 251–256 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Austerweil, J. L. & Griffiths, T. L. A nonparametric Bayesian framework for constructing flexible feature representations. Psychol. Rev. 120, 817–851 (2013).

    Article  Google Scholar 

  13. 13.

    Eyal, T., Hoover, G. M., Fujita, K. & Nussbaum, S. The effect of distance-dependent construals on schema-driven impression formation. J. Exp. Soc. Psychol. 47, 278–281 (2011).

    Article  Google Scholar 

  14. 14.

    Morey, R. D., Rouder, J. N. and Jamil, T. BayesFactor package https://richarddmorey.github.io/BayesFactor/ (2015).

  15. 15.

    Rouder, J. N. & Morey, R. D. A Bayes factor meta-analysis of Bem’s ESP claim. Psychon. Bull. Rev. 18, 682–689 (2011).

    Article  Google Scholar 

  16. 16.

    Alves, H., Koch, A. S. & Unkelbach, C. Why good is more alike than bad: processing implications. Trends Cogn. Sci. 21, 69–79 (2017).

    Article  Google Scholar 

  17. 17.

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Article  Google Scholar 

  18. 18.

    Denrell, J. Why most people disapprove of me: experience sampling in impression formation. Psychol. Rev. 112, 951–978 (2005).

    Article  Google Scholar 

  19. 19.

    Siegel, J. Z., Crockett, M. J. & Dolan, R. J. Inferences about moral character moderate the impact of consequences on blame and praise. Cognition 167, 201–211 (2017).

    Article  Google Scholar 

  20. 20.

    Ito, T. A. & Cacioppo, J. T. Variations on a human universal: individual differences in positivity offset and negativity bias. Cogn. Emot. 19, 1–26 (2010).

    Article  Google Scholar 

  21. 21.

    Hamilton, D. L. & Sherman, S. J. Perceiving persons and groups. Psychol. Rev. 103, 336–355 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    Asch, S. E. Forming impressions of personality. J. Abnorm. Soc. Psychol. 41, 258–290 (1946).

    CAS  Article  Google Scholar 

  23. 23.

    Jones, E. E. & Davis, K. E. in Advances in Experimental Social Psychology Vol. 2 (ed. Berkowitz, L.) 219–266 (Academic Press, 1965).

  24. 24.

    Fiske, S. T. & Neuberg, S. L. in Advances in Experimental Social Psychology Vol. 23 (ed. Zanna, M. P.) 1–74 (Academic Press, 1990).

  25. 25.

    Smith, E. R. & Zárate, M. A. Exemplar-based model of social judgment. Psychol. Rev. 99, 3–21 (1992).

    Article  Google Scholar 

  26. 26.

    Campbell, D. T. Common fate, similarity, and other indices of the status of aggregates of persons as social entities. Behav. Sci. 3, 14–25 (1958).

    Article  Google Scholar 

  27. 27.

    Lickel, B. et al. Varieties of groups and the perception of group entitativity. J. Pers. Soc. Psychol. 78, 223–246 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    Reed, S. K. Pattern recognition and categorization. Cogn. Psychol. 3, 382–407 (1972).

    Article  Google Scholar 

  29. 29.

    Nosofsky, R. M. Attention, similarity, and the identification–categorization relationship. J. Exp. Psychol. Gen. 115, 39–57 (1986).

    CAS  Article  Google Scholar 

  30. 30.

    Hilton, J. L. & von Hippel, W. Stereotypes. Annu. Rev. Psychol. 47, 237–271 (1996).

    CAS  Article  Google Scholar 

  31. 31.

    Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. Rational approximations to rational models: alternative algorithms for category learning. Psychol. Rev. 117, 1144–1167 (2010).

    Article  Google Scholar 

  32. 32.

    Zhang, H. & Maloney, L. T. Ubiquitous log odds: a common representation of probability and frequency distortion in perception, action, and cognition. Front. Neurosci. 6, 1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Merten, K. & Nieder, A. Compressed scaling of abstract numerosity representations in adult humans and monkeys. J. Cogn. Neurosci. 21, 333–346 (2008).

    Article  Google Scholar 

  34. 34.

    Dehaene, S., Dehaene-Lambertz, G. & Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 21, 355–361 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    Wagenmakers, E. J. et al. Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychon. Bull. Rev. 25, 35–57 (2018).

    Article  Google Scholar 

  36. 36.

    Aldous, D. J. in Exchangeability and Related Topics 1117 (ed. Hennequin, P. L.) 1–198 (Springer, 1985).

  37. 37.

    Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    CAS  Article  Google Scholar 

  38. 38.

    Tenenbaum, J. B. & Griffiths, T. L. Generalization, similarity, and Bayesian inference. Behav. Brain Sci. 24, 629–640 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    Fearnhead, P. Particle filters for mixture models with an unknown number of components. Stat. Comput. 14, 11–21 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by grant number W911NF-14-1-0101 from the Army Research Office and grant R01DA042065 from the National Institute of Drug Abuse. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors are grateful to S. DuBrow and A. Radulescu for comments on an earlier draft.

Author information

Affiliations

Authors

Contributions

Y.S.S. and Y.N. designed the study. Y.S.S. ran the experiment. Y.S.S. and Y.N. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Yeon Soon Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Marike Schiffer; Mary-Elizabeth Sutherland.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

41562_2021_1065_MOESM2_ESM.pdf

Reporting summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.S., Niv, Y. Biased evaluations emerge from inferring hidden causes. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01065-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing