Letter | Published:

Choice overload reduces neural signatures of choice set value in dorsal striatum and anterior cingulate cortex

Nature Human Behaviour (2018) | Download Citation

Abstract

Modern societies offer a large variety of choices1,2, which is generally thought to be valuable3,4,5,6,7. But having too much choice can be detrimental1,2,3,8,9,10,11 if the costs of choice outweigh its benefits due to ‘choice overload’12,13,14. Current explanatory models of choice overload mainly derive from behavioural studies13,14. A neuroscientific investigation could further inform these models by revealing the covert mental processes during decision-making. We explored choice overload using functional magnetic resonance imaging while subjects were either choosing from varying-sized choice sets or were browsing them. When choosing from sets of 6, 12 or 24 items, functional magnetic resonance imaging activity in the striatum and anterior cingulate cortex resembled an inverted U-shaped function of choice set size. Activity was highest for 12-item sets, which were perceived as having ‘the right amount’ of options and was lower for 6-item and 24-item sets, which were perceived as ‘too small’ and ‘too large’, respectively. Enhancing choice set value by adding a dominant option led to an overall increase of activity. When subjects were browsing, the decision costs were diminished and the inverted U-shaped activity patterns vanished. Activity in the striatum and anterior cingulate reflects choice set value and can serve as neural indicator of choice overload.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study as well as the data underlying our power calculations are available from the corresponding author upon reasonable request. Unthresholded statistical maps of our main fMRI-results are available at NeuroVault.org66 (https://neurovault.org/collections/4117/).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Schwartz, B. & Ward, A. in Positive Psychology in Practice (eds Linley, P. A. & Joseph, S.) Ch. 6 (Wiley, New York, 2004).

  2. 2.

    Iyengar, S. S., Huberman, G. & Jiang, W. Pension Design and Structure: New Lessons from Behavioral Finance (eds Mitchell O. S. & Utkus S. P.) Ch. 5 (Oxford Scholarship Online, Oxford, 2004).

  3. 3.

    Iyengar, S. S. & Lepper, M. R. When choice is demotivating: can one desire too much of a good thing? J. Pers. Soc. Psychol. 79, 995–1006 (2000).

  4. 4.

    Steiner, I. D. Perceived freedom. Adv. Exp. Social Psychol. 5, 187–248 (1970).

  5. 5.

    Reibstein, D. J., Youngblood, S. A. & Fromkin, H. L. Number of choices and perceived decision freedom as a determinant of satisfaction and consumer behavior. J. Appl. Psychol. 60, 434–437 (1975).

  6. 6.

    Zuckerman, M., Porac, J. F., Lathin, D., Smith, R. & Deci, E. L. On the importance of self-determination for intrinsically motivated behavior. Pers. Soc. Psychol. Bull. 4, 443–446 (1978).

  7. 7.

    Ryan, R. M. & Deci, E. L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55, 68–78 (2000).

  8. 8.

    Sarver, T. Anticipating regret: why fewer options may be better. Econometrica. 76, 263–305 (2008).

  9. 9.

    Loewenstein, G. Is more choice always better? Social Security Brief 7, 1–8 (1999).

  10. 10.

    Chernev, A. When more is less and less is more: the role of ideal point availability and assortment in consumer choice. J. Consum. Res. 30, 170–183 (2003).

  11. 11.

    Chernev, A., Böckenholt, U. & Goodman, J. Choice overload: a conceptual review and meta-analysis. J. Consum. Psychol. 25, 333–358 (2015).

  12. 12.

    Shah, A. M. & Wolford, G. Buying behavior as a function of parametric variation of number of choices. Psychol. Sci. 18, 369–370 (2007).

  13. 13.

    Reutskaja, E. & Hogarth, R. M. Satisfaction in choice as a function of the number of alternatives: when ‘goods satiate’. Psychol. Market. 26, 197–203 (2009).

  14. 14.

    Schwartz, B. & Grant, A. M. Too much of a good thing: the challenge and opportunity of the inverted-U. Persp. Psychol. Sci. 6, 61–76 (2011).

  15. 15.

    Reutskaja, E., Camerer, C., Nagel, R. & Rangel, A. Search dynamics in consumer choice under time pressure: an eye-tracking study. Am. Econ. Rev. 101, 900–926 (2011).

  16. 16.

    Coombs, C. H. & Avrunin, G. S. Single-peaked functions and the theory of preference. Psychol. Rev. 84, 216–230 (1977).

  17. 17.

    Scheibehenne, B., Greifeneder, R. & Todd, P. M. Can there ever be too many options? A meta-analytic review of choice overload. J. Consum. Res. 37, 409–425 (2010).

  18. 18.

    Chernev, A. Decision focus and consumer choice among assortments. J. Consum. Res. 33, 50–59 (2006).

  19. 19.

    Chernev, A. & Hamilton, R. Assortment size and option attractiveness in consumer choice among retailers. J. Marketing Res. 46, 410–420 (2009).

  20. 20.

    Choi, J. & Fishbach, A. Choice as an end versus a means. J. Marketing Res. 48, 544–554 (2011).

  21. 21.

    Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E. J. & Rushworth, M. F. S. Effort-based cost–benefit valuation and the human brain. J. Neurosci. 29, 4531–4541 (2009).

  22. 22.

    Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

  23. 23.

    Botvinick, M. & Braver, T. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66, 83–113 (2015).

  24. 24.

    Andersen, R. A. & Buneo, C. A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

  25. 25.

    Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).

  26. 26.

    Orban, G. A., Van Essen, D. & Vanduffel, W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8, 315–324 (2004).

  27. 27.

    Medendorp, W., Beurze, S., Van Pelt, S. & Van DerWerf, J. Behavioral and cortical mechanisms for spatial coding and action planning. Cortex 44, 587–597 (2008).

  28. 28.

    Lindner, A., Iyer, A., Kagan, I. & Andersen, R. A. Human posterior parietal cortex plans where to reach and what to avoid. J. Neurosci. 30, 11715–11725 (2010).

  29. 29.

    Rosenbaum, D. A. Human movement initiation: specification of arm, direction, and extent. J. Exp. Psychol. Gen. 109, 444–474 (1980).

  30. 30.

    Kimmig, H. et al. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp. Brain Res. 141, 184–194 (2001).

  31. 31.

    Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

  32. 32.

    Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty, and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

  33. 33.

    Hosokawa, T., Kennerley, S. W., Sloan, J. & Wallis, J. D. Single-neuron mechanisms underlying cost–benefit analysis in frontal cortex. J. Neurosci. 33, 17385–17397 (2013).

  34. 34.

    Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M. L. & Dreher, J. C. Separate valuation subsystems for delay and effort decision costs. J. Neurosci. 30, 14080–14090 (2010).

  35. 35.

    Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and valuation in the brain: the effects of anticipation and execution. J. Neurosci. 33, 6160–6169 (2013).

  36. 36.

    Klein-Flugge, M. C., Kennerley, S. W., Friston, K. & Bestmann, S. Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort–reward trade-off. J. Neurosci. 36, 10002–10015 (2016).

  37. 37.

    Chong, T. T. et al. Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biol. 15, e1002598 (2017).

  38. 38.

    Kolling, N., Behrens, T. E., Mars, R. B. & Rushworth, M. F. Neural mechanisms of foraging. Science 336, 95–98 (2012).

  39. 39.

    Schultz, W. Reward functions of the basal ganglia. J. Neural. Transm. 123, 679–693 (2016).

  40. 40.

    Botvinick, M. M., Huffstetler, S. & McGuire, J. T. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9, 16–27 (2009).

  41. 41.

    Kurniawan, I. T. et al. Choosing to make an effort: the role of striatum in signaling physical effort of a chosen action. J. Neurophysiol. 104, 313–321 (2010).

  42. 42.

    Iyer, A., Lindner, A., Kagan, I. & Andersen, R. A. Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value. PLoS Biol. 8, e1000444 (2010).

  43. 43.

    Apicella, P., Ljungberg, T., Scarnati, E. & Schultz, W. Responses to reward in monkey dorsal and ventral striatum. Exp. Brain Res. 85, 491–500 (1991).

  44. 44.

    Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

  45. 45.

    Alexander, G. E., De Long, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

  46. 46.

    Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

  47. 47.

    Schmidt, L., Lebreton, M., Cléry-Melin, M. L., Daunizeau, J. & Pessiglione, M. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 10, e1001266 (2012).

  48. 48.

    Schouppe, N., Demanet, J., Boehler, C. N., Ridderinkhof, K. R. & Notebaert, W. The role of the striatum in effort-based decision-making in the absence of reward. J. Neurosci. 34, 2148–2154 (2014).

  49. 49.

    Brehm, J. W. & Self, E. A. The intensity of motivation. Annu. Rev. Psychol. 40, 109–131 (1989).

  50. 50.

    La Gory, J., Dearen, B. B., Tebo, K. & Wright, R. A. Reported fatigue, difficulty, and cardiovascular response to an auditory mental arithmetic challenge. Int. J. Psychophysiol. 81, 91–98 (2011).

  51. 51.

    Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34, 333–359 (2011).

  52. 52.

    Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

  53. 53.

    Fletcher, P. C., Shallice, T. & Dolan, R. J. The functional roles of prefrontal cortex in episodic memory. I. Encoding. Brain 121, 1239–1248 1998).

  54. 54.

    Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. Dissociation of working memory from decision making within the human prefrontal cortex. J. Neurosci. 18, 428–437 (1998).

  55. 55.

    MacDonald, A. W. III, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

  56. 56.

    Boksem, M. A. S. & Tops, M. Mental fatigue: costs and benefits. Brain Res. Rev. 59, 125–139 (2008).

  57. 57.

    Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

  58. 58.

    Falk, E. B., Elliot, T. B. & Matthew, D. L. From neural responses to population behavior: neural focus group predicts population-level media effects. Psychol. Sci. 23, 439–445 (2012).

  59. 59.

    Genevsky, A Yoon, C. & Knutson, B. When brain beats behavior: neuroforecasting crowdfunding outcomes. J. Neurosc. 37, 8625–8634 2017).

  60. 60.

    Camerer, C. F., Issacharoff, S., Loewenstein, G., O’Donoghue, T. & Rabin, M. Regulation for conservatives: behavioral economics and the case for ‘asymmetric paternalism’. Univ. PA Law Rev. 151, 1211–1254 (2003).

  61. 61.

    Thaler, R. H. & Sunstein, C. R. Nudge: Improving Decisions About Health, Wealth, and Happiness (Penguin, London, 2009).

  62. 62.

    Iyengar, S. S. & Lepper, M. R. Rethinking the value of choice: a cultural perspective on intrinsic motivation. J. Pers. Soc. Psychol. 76, 349–366 (1999).

  63. 63.

    Markus, H. R. & Schwartz, B. Does choice mean freedom and well‐being? J. Consum. Res. 37, 344–355 (2010).

  64. 64.

    Glimcher, P. W. in Neuroeconomics: Decision Making and the Brain (eds Glimcher, P. W., Camrer C. F., Fehr, E. & Poldrack, R. A.) Ch. 32 (Academic Press, London, 2008).

  65. 65.

    Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

  66. 66.

    Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the brain. Front. Neuroinform. 9, 8 (2015).

  67. 67.

    Masson, M. E. & Loftus, G. R. Using confidence intervals for graphically based data interpretation. Can. J. Exp. Psychol. 57, 203–220 (2003).

Download references

Acknowledgements

The authors acknowledge support from the Spanish Ministry of Science and Education, grants nos. ECO2011-29865 (to E.R.), SEJ2005-08391 and ECO2008-01768 (to R.N.), the German Research Council (DFG CIN) (to A.L.), Generalitat de Catalunya, and BGSE (to R.N.), the Moore Foundation (to C.F.C. and R.A.A.), the Human Frontier Science Program (to C.F.C., R.N. and E.R.), the National Institutes of Health (Conte to C.F.C. and R.A.A.), the National Science Foundation and Boswell Foundation (to R.A.A), Caltech T&C Chen Social and Decision Neuroscience Center (to C.F.C.) and Caltech T&C Chen Brain–Machine Interface Center (to R.A.A.). The funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript. The authors thank K. Quinn, A. Tank and A. Miro for help on previous versions of the manuscript.

Author information

Author notes

  1. These authors contributed equally: Elena Reutskaja, Axel Lindner.

Affiliations

  1. Marketing Department, IESE Business School, Barcelona, Spain

    • Elena Reutskaja
  2. Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany

    • Axel Lindner
  3. Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany

    • Axel Lindner
  4. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA

    • Axel Lindner
    •  & Richard A. Andersen
  5. Institució Catalana de Recerca i Estudis Avançats, Barcelona Graduate School of Economics, Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain

    • Rosemarie Nagel
  6. The Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA

    • Richard A. Andersen
  7. Division of the Humanities and Social Sciences and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA

    • Colin F. Camerer

Authors

  1. Search for Elena Reutskaja in:

  2. Search for Axel Lindner in:

  3. Search for Rosemarie Nagel in:

  4. Search for Richard A. Andersen in:

  5. Search for Colin F. Camerer in:

Contributions

Design was carried out by E.R., R.N., A.L., C.F.C. and R.A.A., fMRI collection by A.L. and E.R., fMRI analysis by A.L. and E.R. and other data analysis by E.R., A.L. and R.N. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Axel Lindner.

Supplementary information

  1. Supplementary Information

    Supplementary Discussion, Supplementary Methods, Supplementary References, Supplementary Figures 1–4, Supplementary Tables 1–2

  2. Reporting Summary

  3. Supplementary Data 1

    Multi-tab Excel spreadsheet listing all inference-stats values reported in the manuscript

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41562-018-0440-2