The resilience framework as a strategy to combat stress-related disorders

Consistent failure over the past few decades to reduce the high prevalence of stress-related disorders has motivated a search for alternative research strategies. Resilience refers to the phenomenon of many people maintaining mental health despite exposure to psychological or physical adversity. Instead of aiming to understand the pathophysiology of stress-related disorders, resilience research focuses on protective mechanisms that shield people against the development of such disorders and tries to exploit its insights to improve treatment and, in particular, disease prevention. To fully harness the potential of resilience research, a critical appraisal of the current state of the art — in terms of basic concepts and key methods — is needed. We highlight challenges to resilience research and make concrete conceptual and methodological proposals to improve resilience research. Most importantly, we propose to focus research on the dynamic processes of successful adaptation to stressors in prospective longitudinal studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015).

    Article  Google Scholar 

  2. 2.

    Olesen, J. et al. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162 (2012).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Jorm, A. F., Patten, S. B., Brugha, T. S. & Mojtabai, R. Has increased provision of treatment reduced the prevalence of common mental disorders? Review of the evidence from four countries. World Psychiatry 16b, 90–99 (2017).

    Article  Google Scholar 

  4. 4.

    Bonanno, G. A., Westphal, M. & Mancini, A. D. Resilience to loss and potential trauma. Annu. Rev. Clin. Psychol. 7, 511–535 (2011).

    Article  PubMed  Google Scholar 

  5. 5.

    Boden, J. M. & McLeod, G. F. H. Resilience and psychiatric epidemiology: implications for a conceptual framework. Behav. Brain Sci. 38, e95 (2015).

    Article  PubMed  Google Scholar 

  6. 6.

    Chang, L. J., Reddan, M., Ashar, Y. K., Eisenbarth, H. & Wager, T. D. The challenges of forecasting resilience. Behav. Brain Sci. 38, e98 (2015).

    Article  PubMed  Google Scholar 

  7. 7.

    Sapienza, J. K. & Masten, A. S. Understanding and promoting resilience in children and youth. Curr. Opin. Psychiat. 24, 267–273 (2011).

    Article  Google Scholar 

  8. 8.

    Bonanno, G. A., Romero, S. A. & Klein, S. I. The temporal elements of psychological resilience: an integrative framework for the study of individuals, families, and communities. Psychol. Inq. 26, 139–169 (2015).

    Article  Google Scholar 

  9. 9.

    Kalisch, R., Müller, M. B. & Tüscher, O. A conceptual framework for the neurobiological study of resilience. Behav. Brain Sci. 38, e92 (2015).

  10. 10.

    Kalisch, R., Müller, M. B. & Tüscher, O. Advancing empirical resilience research. Behav. Brain Sci. 38, e128 (2015).

    Article  PubMed  Google Scholar 

  11. 11.

    Tugade, M. M. & Fredrickson, B. L. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J. Pers. Soc. Psychol. 86, 320–333 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kaplan, C. P., Turner, S., Norman, E. & Stillson, K. Promoting resilience strategies: a modified consultation model. Child. Sch. 18, 158–168 (1996).

    Article  Google Scholar 

  13. 13.

    Saleebey, D. The strengths perspective in social work practice: extensions and cautions. Soc. Work 41, 296–305 (1996).

    CAS  PubMed  Google Scholar 

  14. 14.

    Schultze-Lutter, F., Schimmelmann, B. G. & Schmidt, S. J. Resilience, risk, mental health and well-being: associations and conceptual differences. Eur. Child Adolesc. Psychiatry 25, 459–466 (2016).

    Article  PubMed  Google Scholar 

  15. 15.

    Pęciłło, M. The concept of resilience in OSH management: a review of approaches. Int. J. Occup. Saf. Ergon. 22, 291–300 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Luthar, S. S., Cicchetti, D. & Becker, B. The construct of resilience: a critical evaluation and guidelines for future work. Child Dev. 71, 543–562 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tedeschi, R. G. & Calhoun, L. G. Posttraumatic growth: conceptual foundations and empirical evidence. Psychol. Inq. 15, 1–18 (2004).

    Article  Google Scholar 

  18. 18.

    Joseph, S. & Linley, P. A. Growth following adversity: theoretical perspectives and implications for clinical practice. Clin. Psychol. Rev. 26,1041–1053 (2006).

    Article  PubMed  Google Scholar 

  19. 19.

    Johnson, S. F. & Boals, A. Refining our ability to measure posttraumatic growth. Psychol. Trauma Theory Res. Pract. Policy 7, 422–429 (2015).

    Article  Google Scholar 

  20. 20.

    Seery, M. D., Holman, E. A. & Silver, R. C. Whatever does not kill us: cumulative lifetime adversity, vulnerability, and resilience. J. Pers. Soc. Psychol. 99, 1025–1041 (2010).

    Article  PubMed  Google Scholar 

  21. 21.

    Seery, M. D., Leo, R. J., Lupien, S. P., Kondrak, C. L. & Almonte, J. L. An upside to adversity? Moderate cumulative lifetime adversity is associated with resilient responses in the face of controlled stressors. Psychol. Sci. 24, 1181–1189 (2013).

    Article  PubMed  Google Scholar 

  22. 22.

    Boks, M. P. et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology 51, 506–512 (2015).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Breen, M. S. et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol. Psychiatry 20, 1538–1545 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Friedman, A. K. et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344,313–319 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang, M., Perova, Z., Arenkiel, B. R. & Li, B. Synaptic modifications in the medial prefrontal cortex in susceptibility and resilience to stress. J. Neurosci. 34b, 7485–7492 (2014).

    Article  Google Scholar 

  27. 27.

    Maier, S. F. Behavioral control blunts reactions to contemporaneous and future adverse events: medial prefrontal cortex plasticity and a corticostriatal network. Neurobiol. Stress 1, 12–22 (2015).

    Article  PubMed  Google Scholar 

  28. 28.

    Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S. & Nestler, E. J. Neurobiology of resilience. Nat. Neurosci. 15, 1475–1484 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Bonanno, G. A. loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? Am. Psychol. 59, 20–28 (2004).

    Article  PubMed  Google Scholar 

  30. 30.

    Windle, G., Bennett, K. M. & Noyes, J. A methodological review of resilience measurement scales. Health Qual. Life Outcomes 9, 8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kline, A. et al. Gender differences in the risk and protective factors associated with PTSD: a prospective study of National Guard troops deployed to Iraq. Psychiatry 76, 256–272 (2013).

    Article  PubMed  Google Scholar 

  32. 32.

    McAndrew, L. M. et al. Resilience during war: better unit cohesion and reductions in avoidant coping are associated with better mental health function after combat deployment. Psychol. Trauma Theory Res. Pract. Policy 9, 52–61 (2017).

    Article  Google Scholar 

  33. 33.

    Clark, R. et al. Predicting post-traumatic stress disorder in veterans: interaction of traumatic load with COMT gene variation. J. Psychiatr. Res. 47, 1849–1856 (2013).

    Article  PubMed  Google Scholar 

  34. 34.

    Eraly, S. A. et al. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry 71, 423–431 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gupta, S. & Bonanno, G. A. Trait self-enhancement as a buffer against potentially traumatic events: a prospective study. Psychol. Trauma 2, 83–92 (2010).

    Article  Google Scholar 

  36. 36.

    Jenness, J. L. et al. Catastrophizing, rumination, and reappraisal prospectively predict adolescent PTSD symptom onset following a terrorist attack. Depress. Anxiety 33, 1039–1047 (2016).

    Article  Google Scholar 

  37. 37.

    Morin, R. T., Galatzer-Levy, I. R., Maccallum, F. & Bonanno, G. A. Do multiple health events reduce resilience when compared with single events? Health Psychol. (in the press).

  38. 38.

    Smid, G. E. et al. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers. Psychoneuroendocrinology 51, 534–546 (2015).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Steudte-Schmiedgen, S. et al. Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment. Psychoneuroendocrinology 59, 123–133 (2015).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    van Zuiden, M. et al. Pre-existing high glucocorticoid receptor number predicting development of posttraumatic stress symptoms after military deployment. Am. J. Psychiatry 168, 89–96 (2011).

    Article  PubMed  Google Scholar 

  41. 41.

    Wald, I. et al. Attention to threats and combat-related posttraumatic stress symptoms: prospective associations and moderation by the serotonin transporter gene. JAMA Psychiatry 70, 401–408 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zhu, Z., Galatzer-Levy, I. R. & Bonanno, G. A. Heterogeneous depression responses to chronic pain onset among middle-aged adults: a prospective study. Psychiatry Res. 217, 60–66 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The following colleagues were helpful in proof-reading and approving the submitted manuscript: D. Hermans, F. Raes and J. Vlaeyen (all University of Leuven, Belgium), B. Berninger, H. Luhmann, R. Nitsch, K. Radyushkin, S. Ryu, M. Schreckenberger, S. Schweiger, A. Stroh, U. Zechner (all at the University Medical Center of the Johannes Gutenberg University Mainz), A. Acker-Palmer, S. Duvarci, J. Roeper, T. Sigurdsson (all at Goethe University), J. Letzkus, E. Schuman (both at Max Planck Institute for Brain Research) and V. Tiwari (Institute for Molecular Biology). In preparing this Perspective, U.B. was supported by the Deutsche Forschungsgemeinschaft (DFG CRC 1193, subproject C06); G.A.B. by the United States-Israel Binational Science Foundation (project 2013067), David and Maureen O’Connor, and the Rockefeller Foundation (2012-RLC 304); A.C. by DFG CRC 1193, subproject C04; E.B. by the European Union’s Horizon 2020 Programme (EU H2020/705217); C.J.F. by DFG CRC 1193, subprojects C03 and C06, DFG FI 848/5-1, and the European Research Council (ERC-CoG 617891); I.G.-L. by the National Institute of Mental Health (K01MH102415); S.G. by DFG CRC 1193, subproject B05; E.J.H. by the ERC (ERC-CoG682591); R.K. by DFG CRC 1193, subprojects B01 and C01, and the State of Rhineland-Palatinate (project 1080, MARP); K.L. by DFG CRC 1193, subproject Z03, and the State of Rhineland-Palatinate (project 1080, MARP); B.L. by DFG CRC 1193, subprojects A02, B03, and Z02; M.B.M. by DFG CRC 1193, subprojects A03 and Z02; R.J.M. by the Swiss National Science Foundation (SNF 100014-143398; project no. un 8306); A.R. by DFG CRC 1193, subprojects C07 and Z03, and EU H2020/2014-2020 (643051 (MiND) and 667302 (CoCA)); K.R. by the ERC (ERC_StG2012_313749) and the NWO (NWO VICI no. 453-12-001); B.P.F.R. by the NWO (NWO VENI no. 916-11-086); D.S. by the SNF (SNF 100014-143398, project no. un 8306); O.T. by DFG CRC 1193, subproject C04, and the State of Rhineland-Palatinate (project 1080, MARP); A.-L.v.H. by the Royal Society (DH150176); C.H.V. by the Netherlands Brain Foundation (Fellowship F2013(1)-216) and the NWO (NWO VENI no. 451-13-001); T.D.W. by the National Institute of Health (NIH); M.We. by DFG CRC 1193, subprojects C05 and C07; and M.Wi. by DFG CRC 1193, subproject C04. The authors thank A. Kline and J. L. Jenness for providing unpublished results.

Author information



Corresponding author

Correspondence to Raffael Kalisch.

Ethics declarations

Competing interests

All authors report to have no financial and non-financial actual or perceived competing interests. A.R. has received a research grant from Medice and speakers honoraria from neuraxpharm and Boehringer. H.W. has received a speaker’s honorarium from Servier. All other authors report no financial relationships with commercial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalisch, R., Baker, D.G., Basten, U. et al. The resilience framework as a strategy to combat stress-related disorders. Nat Hum Behav 1, 784–790 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing