Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substantial halogenated organic chemicals stored in permafrost soils on the Tibetan Plateau

Abstract

Permafrost in the polar regions potentially stores large amounts of toxic chemicals, including organic compounds bound with halogens. The release of such halogenated organic chemicals (HOC) from thawing permafrost represents a potential global concern with climate change. However, the exact inventory of HOC remains uncertain because conventional analytical techniques largely overlook nonextractable residues. Here we present an inventory of HOC in permafrost soils sampled from the Tibetan Plateau using stepwise chemical treatment following conventional solvent extraction to release and analyse the nonextractable residues. We identify more than 270 types of HOC, with total mean concentration of 310,000 ng g−1, of which 180,000 ng g−1 are naturally sourced based on their molecular structures. We also find unexpectedly high fractions of the nonextractable residues, contributing more than 99% of the total HOC, much higher than those reported for other soils and sediments. Up to 85% of the nonextractable residues are physically entrapped in soils rather than chemically bound, such that they could readily be remobilized if soil properties change. We suggest that this substantial stock of HOC in Tibetan Plateau permafrost poses potentially important future risks to local ecosystems in a warming climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of solvent extraction and stepwise chemical treatment.
Fig. 2: Chromatographic and identified results of HOC.
Fig. 3: Quantified results of HOC.
Fig. 4: Results of this work versus literature data.
Fig. 5: Distribution of HOC as EF and NER.
Fig. 6: Opposite distribution of HOC in the Tibetan Plateau permafrost and in industrially contaminated soils.

Similar content being viewed by others

Data availability

All data within the paper and its Supplementary Information files are available through Figshare at https://doi.org/10.6084/m9.figshare.24087459. Source data are provided with this paper.

References

  1. Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Change 11, 809–819 (2021).

    Article  Google Scholar 

  2. Blais, J. M. et al. Accumulation of persistent organochlorine compounds in mountains of western Canada. Nature 395, 585–588 (1998).

    Article  Google Scholar 

  3. Ma, J., Hung, H., Tian, C. & Kallenborn, R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat. Clim. Change 1, 255–260 (2011).

    Article  Google Scholar 

  4. Cabrerizo, A. et al. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the high Arctic: sorption and secondary sources. Environ. Sci. Technol. 52, 14187–14197 (2018).

    Article  Google Scholar 

  5. Jones, K. C. Persistent organic pollutants (POPs) and related chemicals in the global environment: some personal reflections. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c08093 (2021).

  6. Keppler, F., Eiden, R., Niedan, V., Pracht, J. & Schöler, H. F. Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 409, 298–301 (2001).

    Article  Google Scholar 

  7. Simonich, S. L. & Hites, R. A. Global distribution of persistent organochlorine compounds. Science 269, 1851–1854 (1995).

    Article  Google Scholar 

  8. Chen, L. et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 7, 13046 (2016).

    Article  Google Scholar 

  9. Luo, D., Jin, H., Bense, V. F., Jin, X. & Li, X. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma 376, 114531 (2020).

    Article  Google Scholar 

  10. Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    Article  Google Scholar 

  11. Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, 2–10 (2020).

    Google Scholar 

  12. Dalla Valle, M., Jurado, E., Dachs, J., Sweetman, A. J. & Jones, K. C. The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling. Environ. Pollut. 134, 153–164 (2005).

    Article  Google Scholar 

  13. Wang, X. P. et al. Persistent organic pollutants in the Tibetan surface soil: spatial distribution, air–soil exchange and implications for global cycling. Environ. Pollut. 170, 145–151 (2012).

    Article  Google Scholar 

  14. Meijer, S. N. et al. Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ. Sci. Technol. 37, 667–672 (2003).

    Article  Google Scholar 

  15. Barriuso, E., Benoit, P. & Dubus, I. G. Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environ. Sci. Technol. 42, 1845–1854 (2008).

    Article  Google Scholar 

  16. Loos, M., Krauss, M. & Fenner, K. Pesticide nonextractable residue formation in soil: insights from inverse modeling of degradation time series. Environ. Sci. Technol. 46, 9830–9837 (2012).

    Article  Google Scholar 

  17. Ortega-Calvo, J. J. et al. in Bioavailability of Organic Chemicals in Soil and Sediment: The Handbook of Environmental Chemistry Vol. 100 (eds Ortega-Calvo, J. J. & Parsons, J. R.) 243–265 (Springer, 2020).

  18. Zhu, X., Dsikowitzky, L., Kucher, S., Ricking, M. & Schwarzbauer, J. Formation and fate of point-source nonextractable DDT-related compounds on their environmental aquatic–terrestrial pathway. Environ. Sci. Technol. 53, 1305–1314 (2019).

    Article  Google Scholar 

  19. Schwarzbauer, J. & Jovančićević, B. in Organic Pollutants in the Geosphere: Fundamentals in Organic Geochemistry (eds Schwarzbauer, J. & Jovančićević, B.) 1–54 (Springer, 2018).

  20. Liebich, J., Burauel, P. & Fuhr, F. Microbial release and degradation of nonextractable anilazine residues. J. Agric. Food Chem. 47, 3905–3910 (1999).

    Article  Google Scholar 

  21. Liu, X. et al. Bioavailability and release of nonextractable (bound) residues of chiral cycloxaprid using geophagous earthworm Metaphire guillelmi in rice paddy soil. Sci. Total Environ. 526, 243–250 (2015).

    Article  Google Scholar 

  22. Geng, C. et al. Modeling the release of organic contaminants during compost decomposition in soil. Chemosphere 119, 423–431 (2015).

    Article  Google Scholar 

  23. Schäffer, A., Kästner, M. & Trapp, S. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence. Environ. Sci. Eur. 30, 51 (2018).

    Article  Google Scholar 

  24. Barriuso, E., Houot, S. & Serra-Wittling, C. Influence of compost addition to soil on the behaviour of herbicides. Pestic. Sci. 49, 65–75 (1997).

    Article  Google Scholar 

  25. Murillo-Zamora, S., Castro-Gutiérrez, V., Masís-Mora, M., Lizano-Fallas, V. & Rodríguez-Rodríguez, C. E. Elimination of fungicides in biopurification systems: effect of fungal bioaugmentation on removal performance and microbial community structure. Chemosphere 186, 625–634 (2017).

    Article  Google Scholar 

  26. Zhu, X., Song, X. & Schwarzbauer, J. First insights into the formation and long-term dynamic behaviors of nonextractable perfluorooctanesulfonate and its alternative 6:2 chlorinated polyfluorinated ether sulfonate residues in a silty clay soil. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143230 (2020).

  27. Liu, J. et al. Degradation, metabolism, and bound-residue formation and release of tetrabromobisphenol A in soil during sequential anoxic–oxic incubation. Environ. Sci. Technol. 47, 8348–8354 (2013).

    Article  Google Scholar 

  28. Chang, R. et al. Soil organic carbon becomes newer under warming at a permafrost site on the Tibetan Plateau. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2020.108074 (2021).

  29. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  Google Scholar 

  30. Schwarzbauer, J., Ricking, M. & Littke, R. DDT-related compounds bound to the nonextractable particulate matter in sediments of the Teltow Canal, Germany. Environ. Sci. Technol. 37, 488–495 (2003).

    Article  Google Scholar 

  31. Schwarzbauer, J., Ricking, M. & Littke, R. Quantitation of nonextractable anthropogenic sediments after chemical degradation. Acta Hydrochim. Hydrobiol. 31, 469–481 (2003).

    Article  Google Scholar 

  32. Kronimus, A. & Schwarzbauer, J. Non-target screening of extractable and non-extractable organic xenobiotics in riverine sediments of Ems and Mulde rivers, Germany. Environ. Pollut. 147, 176–186 (2007).

    Article  Google Scholar 

  33. Kucher, S. & Schwarzbauer, J. DDT-related compounds as non-extractable residues in submarine sediments of the Palos Verdes Shelf, California, USA. Chemosphere 185, 529–538 (2017).

    Article  Google Scholar 

  34. Zhu, X., Dsikowitzky, L., Ricking, M. & Schwarzbauer, J. Molecular insights into the formation and remobilization potential of nonextractable anthropogenic organohalogens in heterogeneous environmental matrices. J. Hazard. Mater. 381, 120959 (2020).

    Article  Google Scholar 

  35. Schwarzbauer, J. & Jovančićević, B. Introduction to Analytical Methods in Organic Geochemistry (Springer, 2020).

  36. Asplund, G. & Grimvall, A. Organohalogens in nature. Environ. Sci. Technol. 25, 1346–1350 (1991).

    Article  Google Scholar 

  37. Butler, A. & Sandy, M. Mechanistic considerations of halogenating enzymes. Nature 460, 848–854 (2009).

    Article  Google Scholar 

  38. Regional Screening Levels (RSLs) - Generic Tables (EPA, 2022); https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  39. Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40, 1341–1348 (2022).

    Article  Google Scholar 

  40. Jin, H. J., Chang, X. L. & Wang, S. L. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2006JF000521 (2007).

  41. Kaiser, K. et al. Turf-bearing topsoils on the central Tibetan Plateau, China: pedology, botany, geochronology. Catena 73, 300–311 (2008).

    Article  Google Scholar 

  42. Ding, J. et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 10, 4195 (2019).

  43. Li, F. et al. Fate of tetrabromobisphenol A (TBBPA) and formation of ester- and ether-linked bound residues in an oxic sandy soil. Environ. Sci. Technol. 49, 12758–12765 (2015).

  44. Leri, A. C. & Myneni, S. C. B. Natural organobromine in terrestrial ecosystems. Geochim. Cosmochim. Acta 77, 1–10 (2012).

    Article  Google Scholar 

  45. Liu, C. et al. Preferential halogenation of algal organic matter by iodine over chlorine and bromine: formation of disinfection byproducts and correlation with toxicity of disinfected waters. Environ. Sci. Technol. 56, 1244–1256 (2022).

    Article  Google Scholar 

  46. Hao, Z., Shi, F., Cao, D., Liu, J. & Jiang, G. Freezing-induced bromate reduction by dissolved organic matter and the formation of organobromine compounds. Environ. Sci. Technol. 54, 1668–1676 (2020).

    Article  Google Scholar 

  47. Du, J., Kim, K., Min, D. W. & Choi, W. Freeze–thaw cycle-enhanced transformation of iodide to organoiodine compounds in the presence of natural organic matter and Fe(III). Environ. Sci. Technol. 56, 1007–1016 (2022).

    Article  Google Scholar 

  48. Guidance for Addressing Unextracted Pesticide Residues in Laboratory Studies (EPA, 2023); https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-addressing-unextracted-pesticide-residues

  49. Daout, S., Dini, B., Haeberli, W., Doin, M. P. & Parsons, B. Ice loss in the northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions. Earth Planet. Sci. Lett. 545, 116404 (2020).

    Article  Google Scholar 

  50. Shukla, T. & Sen, I. S. Preparing for floods on the Third Pole. Science 372, 232–234 (2021).

    Article  Google Scholar 

  51. Zheng, G. et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 11, 411–417 (2021).

    Article  Google Scholar 

  52. Ren, J., Wang, X., Gong, P. & Wang, C. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming. Environ. Sci. Technol. 53, 3589–3598 (2019).

    Article  Google Scholar 

  53. Tao, S. et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau. J. Environ. Monit. 13, 175–181 (2011).

    Article  Google Scholar 

  54. Fu, S., Chu, S. & Xu, X. Organochlorine pesticide residue in soils from Tibet, China. Bull. Environ. Contam. Toxicol. 66, 171–177 (2001).

    Article  Google Scholar 

  55. Xing, X. L., Qi, S. H., Zhang, Y., Yang, D. & Odhiambo, J. O. Organochlorine pesticides (OCPs) in soils along the eastern slope of the Tibetan Plateau. Pedosphere 20, 607–615 (2010).

    Article  Google Scholar 

  56. Yuan, G. L., Qin, J. X., Lang, X. X., Li, J. & Wang, G. H. Factors influencing the accumulation of organochlorine pesticides in the surface soil across the central Tibetan Plateau, China. Environ. Sci. Process. Impacts 16, 1022–1028 (2014).

    Article  Google Scholar 

  57. Yang, R., Zhang, S., Li, A., Jiang, G. & Jing, C. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the southeast Tibetan Plateau: implications for sources and environmental cycling. Environ. Sci. Technol. 47, 12736–12743 (2013).

    Article  Google Scholar 

  58. Chen, D., Liu, W., Liu, X., Westgate, J. N. & Wania, F. Cold-trapping of persistent organic pollutants in the mountain soils of western Sichuan, China. Environ. Sci. Technol. 42, 9086–9091 (2008).

    Article  Google Scholar 

  59. Ma, Y. et al. Review of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) contamination in Chinese soils. Sci. Total Environ. 749, 141212 (2020).

    Article  Google Scholar 

  60. Chen, L. et al. Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau. Sci. Total Environ. 577, 405–412 (2017).

    Article  Google Scholar 

  61. Wang, C., Wang, X., Gong, P. & Yao, T. Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau. Chemosphere 149, 358–365 (2016).

    Article  Google Scholar 

  62. Nam, J. J. et al. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: implications for sources and environmental fate. Environ. Pollut. 156, 809–817 (2008).

    Article  Google Scholar 

  63. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Article  Google Scholar 

  64. Gruber, S. & National Center for Atmospheric Research Staff (eds) The Climate Data Guide: Global Permafrost Zonation Index Map (NCAR, accessed 15 June 2022); https://climatedataguide.ucar.edu/climate-data/global-permafrost-zonation-index-map

  65. Berger, M. & Schwarzbauer, J. Historical deposition of riverine contamination on terrestrial floodplains as revealed by organic indicators from an industrial point source. Water Air Soil Pollut. 227, 20 (2016).

    Article  Google Scholar 

  66. Gevao, B., Jones, K. C. & Semple, K. T. Formation and release of non-extractable 14C-dicamba residues in soil under sterile and non-sterile regimes. Environ. Pollut. 133, 17–24 (2005).

    Article  Google Scholar 

  67. Wang, Y. et al. Degradation, transformation, and non-extractable residue formation of nitrated nonylphenol isomers in an oxic soil. Environ. Pollut. 289, 117880 (2021).

    Article  Google Scholar 

  68. Ruan, F. et al. Preparation and properties of organic–inorganic hybrid fluorescent materials based on MXene doping. Inorg. Chem. Commun. 153, 110778 (2023).

    Article  Google Scholar 

  69. Fang, C., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433, 57–59 (2005).

    Article  Google Scholar 

  70. Xu, X., Luo, Y. & Zhou, J. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biol. Biochem. 50, 142–148 (2012).

    Article  Google Scholar 

  71. Li, J. et al. Rising temperature may trigger deep soil carbon loss across forest ecosystems. Adv. Sci. 7, 2001242 (2020).

    Article  Google Scholar 

  72. Wollenweber, J. et al. Characterisation of non-extractable macromolecular organic matter in Palaeozoic coals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 275–304 (2006).

    Article  Google Scholar 

  73. Schwarzbauer, J., Ricking, M., Franke, S. & Francke, W. Halogenated organic contaminants in sediments of the Havel and Spree rivers (Germany). Part 5 of organic compounds as contaminants of the Elbe River and its tributaries. Environ. Sci. Technol. 35, 4015–4025 (2001).

    Article  Google Scholar 

  74. Options to Address Non-extractable Residues in Regulatory Persistence Assessment (European Chemicals Agency, 2019); https://echa.europa.eu/documents/10162/17224/bg_note_addressing_non-extractable_residues.pdf/e88d4fc6-a125-efb4-8278-d58b31a5d342

  75. Riefer, P. et al. Incorporation mechanisms of a branched nonylphenol isomer in soil-derived organo-clay complexes during a 180-day experiment. Environ. Sci. Technol. 47, 7155–7162 (2013).

    Article  Google Scholar 

  76. Kalathoor, R., Zeiner, M., Schmidt, B., Schäffer, A. & Schwarzbauer, J. First evidence for covalent linkage of acidic metabolites of metalaxyl and DDT as non-extractable pesticide residues in soil and sediment. Environ. Chem. Lett. 13, 431–437 (2015).

    Article  Google Scholar 

  77. Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

    Article  Google Scholar 

  78. Ricking, M. & Schwarzbauer, J. HCH residues in point-source contaminated samples of the Teltow Canal in Berlin, Germany. Environ. Chem. Lett. 6, 83–89 (2008).

    Article  Google Scholar 

  79. Scheunert, I. Mikrobieller Abbau organischer Fremdstoffe im Boden. Chem. Unserer Zeit 28, 68–78 (1994).

  80. Middeldorp, P. J. M., Jaspers, M., Zehnder, A. J. B. & Schraa, G. Biotransformation of α-, β-, γ-, and δ-hexachlorocyclohexane under methanogenic conditions. Environ. Sci. Technol. 30, 2345–2349 (1996).

    Article  Google Scholar 

  81. Quintero, J. C., Moreira, M. T., Feijoo, G. & Lema, J. M. Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 61, 528–536 (2005).

    Article  Google Scholar 

  82. Parlar, H. & Angerhöfer, D. Chemische Ökotoxikologie (Springer, 1995).

  83. Aliyeva, G., Kurkova, R., Hovorkova, I., Klánová, J. & Halsall, C. Organochlorine pesticides and polychlorinated biphenyls in air and soil across Azerbaijan. Environ. Sci. Pollut. Res. 19, 1953–1962 (2012).

    Article  Google Scholar 

  84. Covaci, A., Manirakiza, P. & Schepens, P. Persistent organochlorine pollutants in soils from Belgium, Italy, Greece, and Romania. Bull. Environ. Contam. Toxicol. 68, 97–103 (2002).

    Article  Google Scholar 

  85. Rissato, S. R. et al. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the northeastern part of São Paulo state, Brazil. Chemosphere 65, 1949–1958 (2006).

    Article  Google Scholar 

  86. Wong, F., Robson, M., Diamond, M. L., Harrad, S. & Truong, J. Concentrations and chiral signatures of POPs in soils and sediments: a comparative urban versus rural study in Canada and UK. Chemosphere 74, 404–411 (2009).

    Article  Google Scholar 

  87. Daly, G. L., Lei, Y. D., Teixeira, C., Muir, D. C. G. & Wania, F. Pesticides in western Canadian mountain air and soil. Environ. Sci. Technol. 41, 6020–6025 (2007).

    Article  Google Scholar 

  88. Yang, D., Qi, S., Zhang, J., Wu, C. & Xing, X. Organochlorine pesticides in soil, water and sediment along the Jinjiang River mainstream to Quanzhou Bay, southeast China. Ecotoxicol. Environ. Saf. 89, 59–65 (2013).

    Article  Google Scholar 

  89. Li, J., Zhang, G., Qi, S., Li, X. & Peng, X. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. Sci. Total Environ. 372, 215–224 (2006).

    Article  Google Scholar 

  90. Ma, X., Ran, Y., Gong, J. & Zou, M. Concentrations and inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in watershed soils in the Pearl River Delta, China. Environ. Monit. Assess. 145, 453–464 (2008).

    Article  Google Scholar 

  91. Jiang, Y. F. et al. Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J. Hazard. Mater. 170, 989–997 (2009).

    Article  Google Scholar 

  92. Zhu, Y., Liu, H., Xi, Z., Cheng, H. & Xu, X. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere 60, 770–778 (2005).

    Article  Google Scholar 

  93. Li, X. et al. Contamination of soils with organochlorine pesticides in urban parks in Beijing, China. Chemosphere 70, 1660–1668 (2008).

    Article  Google Scholar 

  94. Wang, X., Wang, D., Qin, X. & Xu, X. Residues of organochlorine pesticides in surface soils from college school yards in Beijing, China. J. Environ. Sci. 20, 1090–1096 (2008).

    Article  Google Scholar 

  95. Zhang, H., Lu, Y., Dawson, R. W., Shi, Y. & Wang, T. Classification and ordination of DDT and HCH in soil samples from the Guanting Reservoir, China. Chemosphere 60, 762–769 (2005).

    Article  Google Scholar 

  96. Gong, Z. M. et al. Residues of hexachlorocyclohexane isomers and their distribution characteristics in soils in the Tianjin area, China. Arch. Environ. Contam. Toxicol. 46, 432–437 (2004).

    Article  Google Scholar 

  97. Wang, F. et al. Residual characteristics of organochlorine pesticides in Lou soils with different fertilization modes. Pedosphere 16, 161–168 (2006).

    Article  Google Scholar 

  98. Wang, F. et al. Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. J. Environ. Sci. 19, 584–590 (2007).

    Article  Google Scholar 

  99. Zhang, H. B., Luo, Y. M., Zhao, Q. G., Wong, M. H. & Zhang, G. L. Residues of organochlorine pesticides in Hong Kong soils. Chemosphere 63, 633–641 (2006).

    Article  Google Scholar 

  100. Zhang, L. et al. Organochlorine pesticides contamination in surface soils from two pesticide factories in Southeast China. Chemosphere 77, 628–633 (2009).

    Article  Google Scholar 

  101. Gao, F., Jia, J. & Wang, X. Occurrence and ordination of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in agricultural soils from Guangzhou, China. Arch. Environ. Contam. Toxicol. 54, 155–166 (2008).

    Article  Google Scholar 

  102. Tao, S. et al. Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China. Environ. Sci. Technol. 42, 8395–8400 (2008).

    Article  Google Scholar 

  103. Ni, H. G., Cao, S. P., Ji, L. Y. & Zeng, H. Incidence of organochlorine pesticides in soils of Shenzhen, China. J. Environ. Monit. 13, 951–956 (2011).

    Article  Google Scholar 

  104. Zhan, L. et al. Occurrence and air–soil exchange of organochlorine pesticides and polychlorinated biphenyls at a CAWNET background site in central China: implications for influencing factors and fate. Chemosphere 186, 475–487 (2017).

    Article  Google Scholar 

  105. Daly, G. L. et al. Organochlorine pesticides in the soils and atmosphere of Costa Rica. Environ. Sci. Technol. 41, 1124–1130 (2007).

    Article  Google Scholar 

  106. Marrugo-Negrete, J. L., Navarro-Frómeta, A. E. & Urango-Cardenas, I. D. Organochlorine pesticides in soils from the middle and lower Sinú River Basin (Córdoba, Colombia). Water Air Soil Pollut. https://doi.org/10.1007/s11270-014-2053-3 (2014).

  107. Holoubek, I. et al. Soil burdens of persistent organic pollutants - their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environ. Pollut. 157, 3207–3217 (2009).

    Article  Google Scholar 

  108. El-Kabbany, S., Rashed, M. M. & Zayed, M. A. Monitoring of the pesticide levels in some water supplies and agricultural land, in El-Haram, Giza (A.R.E.). J. Hazard. Mater. 72, 11–21 (2000).

    Article  Google Scholar 

  109. Roots, O. et al. Distribution pattern of PCBs, HCB and PeCB using passive air and soil sampling in Estonia. Environ. Sci. Pollut. Res. 17, 740–749 (2010).

    Article  Google Scholar 

  110. Villanneau, E. J. et al. Which persistent organic pollutants can we map in soil using a large spacing systematic soil monitoring design? A case study in northern France. Sci. Total Environ. 409, 3719–3731 (2011).

    Article  Google Scholar 

  111. Manz, M., Wenzel, K. D., Dietze, U. & Schüürmann, G. Persistent organic pollutants in agricultural soils of central Germany. Sci. Total Environ. 277, 187–198 (2001).

    Article  Google Scholar 

  112. Wenzel, K. D., Manz, M., Hubert, A. & Schüürmann, G. Fate of POPs (DDX, HCHs, PCBs) in upper soil layers of pine forests. Sci. Total Environ. 286, 143–154 (2002).

    Article  Google Scholar 

  113. Degrendele, C. et al. Diurnal variations of air–soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a central European receptor area. Environ. Sci. Technol. 50, 4278–4288 (2016).

    Article  Google Scholar 

  114. Kumar, B. et al. Persistent organochlorine pesticides and polychlorinated biphenyls in intensive agricultural soils from North India. Soil Water Res. 6, 190–197 (2011).

    Article  Google Scholar 

  115. Babu, G. S. et al. DDT and HCH residues in Basmati rice (Oryza sativa) cultivated in Dehradun (India). Water Air Soil Pollut. 144, 149–157 (2003).

    Article  Google Scholar 

  116. Mishra, K., Sharma, R. C. & Kumar, S. Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicol. Environ. Saf. 76, 215–225 (2012).

    Article  Google Scholar 

  117. Kumari, B., Singh, R., Madan, V. K., Kumar, R. & Kathpal, T. S. DDT and HCH compounds in soils, ponds, and drinking water of Haryana, India. Bull. Environ. Contam. Toxicol. 57, 787–793 (1996).

    Article  Google Scholar 

  118. Nawab, A., Aleem, A. & Malik, A. Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresour. Technol. 88, 41–46 (2003).

    Article  Google Scholar 

  119. Chakraborty, P., Zhang, G., Li, J., Sivakumar, A. & Jones, K. C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Environ. Pollut. 204, 74–80 (2015).

    Article  Google Scholar 

  120. Devi, N. L., Chakraborty, P., Shihua, Q. & Zhang, G. Selected organochlorine pesticides (OCPs) in surface soils from three major states from the northeastern part of India. Environ. Monit. Assess. 185, 6667–6676 (2013).

    Article  Google Scholar 

  121. Devi, N. L., Yadav, I. C., Raha, P., Shihua, Q. & Dan, Y. Spatial distribution, source apportionment and ecological risk assessment of residual organochlorine pesticides (OCPs) in the Himalayas. Environ. Sci. Pollut. Res. 22, 20154–20166 (2015).

    Article  Google Scholar 

  122. Tremolada, P. et al. POPs in mountain soils from the Alps and Andes: suggestions for a ‘precipitation effect’ on altitudinal gradients. Water Air Soil Pollut. 188, 93–109 (2008).

    Article  Google Scholar 

  123. Thiombane, M. et al. Status, sources and contamination levels of organochlorine pesticide residues in urban and agricultural areas: a preliminary review in central–southern Italian soils. Environ. Sci. Pollut. Res. 25, 26361–26382 (2018).

    Article  Google Scholar 

  124. Tremolada, P. et al. Preferential retention of POPs on the northern aspect of mountains. Environ. Pollut. 157, 3298–3307 (2009).

    Article  Google Scholar 

  125. Łozowicka, B. et al. Evaluation of organochlorine pesticide residues in soil and plants from east Europe and central Asia. Desalin. Water Treat. 57, 1310–1321 (2016).

    Article  Google Scholar 

  126. Sun, H., Qi, Y., Zhang, D., Li, Q. X. & Wang, J. Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, eastern Africa. Environ. Pollut. 209, 177–185 (2016).

    Article  Google Scholar 

  127. Li, Q., Wu, J. & Sakiev, K. Organochlorine pesticides (OCPs) in soils near and around Lake Son-Kul in the western Tian Shan Mountains, Central Asia. J. Soils Sediments 19, 1685–1696 (2019).

    Article  Google Scholar 

  128. Wong, F. et al. Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos. Environ. 42, 7737–7745 (2008).

    Article  Google Scholar 

  129. Wong, F., Alegria, H. A. & Bidleman, T. F. Organochlorine pesticides in soils of Mexico and the potential for soil–air exchange. Environ. Pollut. 158, 749–755 (2010).

    Article  Google Scholar 

  130. Sánchez-Osorio, J. L., Macías-Zamora, J. V., Ramírez-Álvarez, N. & Bidleman, T. F. Organochlorine pesticides in residential soils and sediments within two main agricultural areas of northwest Mexico: concentrations, enantiomer compositions and potential sources. Chemosphere 173, 275–287 (2017).

    Article  Google Scholar 

  131. Yadav, I. C., Devi, N. L., Li, J., Zhang, G. & Shakya, P. R. Occurrence, profile and spatial distribution of organochlorines pesticides in soil of Nepal: implication for source apportionment and health risk assessment. Sci. Total Environ. 573, 1598–1606 (2016).

    Article  Google Scholar 

  132. Pokhrel, B. et al. Distribution, sources, and air–soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal. Chemosphere 200, 532–541 (2018).

    Article  Google Scholar 

  133. Bajwa, A. et al. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: status, soil–air exchange and black carbon mediated distribution. Chemosphere 152, 292–300 (2016).

    Article  Google Scholar 

  134. Syed, J. H. et al. Organochlorine pesticides in air and soil and estimated air–soil exchange in Punjab, Pakistan. Sci. Total Environ. 444, 491–497 (2013).

    Article  Google Scholar 

  135. Syed, J. H. & Malik, R. N. Occurrence and source identification of organochlorine pesticides in the surrounding surface soils of the Ittehad Chemical Industries Kalashah Kaku, Pakistan. Environ. Earth Sci. 62, 1311–1321 (2011).

    Article  Google Scholar 

  136. Ali, U. et al. Role of black carbon in soil distribution of organochlorines in Lesser Himalayan region of Pakistan. Environ. Pollut. 236, 971–982 (2018).

    Article  Google Scholar 

  137. Alamdar, A. et al. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad city, Pakistan: contamination levels and their potential for air–soil exchange. Sci. Total Environ. 470–471, 733–741 (2014).

    Article  Google Scholar 

  138. Falandysz, J., Brudnowska, B., Kawano, M. & Wakimoto, T. Polychlorinated biphenyls and organochlorine pesticides in soils from the southern part of Poland. Arch. Environ. Contam. Toxicol. 40, 173–178 (2001).

    Article  Google Scholar 

  139. Migaszewski, Z. M. Determining organic compound ratios in soils and vegetation of the Holy Cross MTS, Poland. Water Air Soil Pollut. 111, 123–138 (1999).

    Article  Google Scholar 

  140. Covaci, A., Hura, C. & Schepens, P. Selected persistent organochlorine pollutants in Romania. Sci. Total Environ. 280, 143–152 (2001).

    Article  Google Scholar 

  141. Dragan, D. et al. Occurrence of organochlorine pesticides and polychlorinated biphenyls in soils and sediments from eastern Romania. Int. J. Environ. Anal. Chem. 86, 833–842 (2006).

    Article  Google Scholar 

  142. Ene, A., Bogdevich, O. & Sion, A. Levels and distribution of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. Sci. Total Environ. 439, 76–86 (2012).

    Article  Google Scholar 

  143. Tarcau, D., Cucu-Man, S., Boruvkova, J., Klanova, J. & Covaci, A. Organochlorine pesticides in soil, moss and tree-bark from north-eastern Romania. Sci. Total Environ. 456–457, 317–324 (2013).

    Article  Google Scholar 

  144. Quinn, L. et al. Distribution profiles of selected organic pollutants in soils and sediments of industrial, residential and agricultural areas of South Africa. J. Environ. Monit. 11, 1647–1657 (2009).

    Article  Google Scholar 

  145. Kim, J. H. & Smith, A. Distribution of organochlorine pesticides in soils from South Korea. Chemosphere 43, 137–140 (2001).

    Article  Google Scholar 

  146. Calvelo Pereira, R., Monterroso Martínez, M. C., Martínez Cortízas, A. & Macías, F. Analysis of composition, distribution and origin of hexachlorocyclohexane residues in agricultural soils from NW Spain. Sci. Total Environ. 408, 5583–5591 (2010).

    Article  Google Scholar 

  147. Grimalt, J. O. et al. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 54, 1549–1561 (2004).

    Article  Google Scholar 

  148. Ribes, A., Grimalt, J. O., Torres Garcia, C. J. & Cuevas, E. Temperature and organic matter dependence of the distribution of organochlorine compounds in mountain soils from the subtropical Atlantic (Teide, Tenerife Island). Environ. Sci. Technol. 36, 1879–1885 (2002).

    Article  Google Scholar 

  149. Kishimba, M. A. et al. The status of pesticide pollution in Tanzania. Talanta 64, 48–53 (2004).

    Article  Google Scholar 

  150. Kihampa, C., Ram Mato, R. & Mohamed, H. Residues of organochlorinated pesticides in soil from tomato fields, Ngarenanyuki, Tanzania. J. Appl. Sci. Environ. Manag. https://doi.org/10.4314/jasem.v14i3.61462 (2010).

  151. Manirakiza, P., Akinbamijo, O., Covaci, A., Pitonzo, R. & Schepens, P. Assessment of organochlorine pesticide residues in West African city farms: Banjul and Dakar case study. Arch. Environ. Contam. Toxicol. 44, 171–179 (2003).

    Article  Google Scholar 

  152. Meijer, S. N. et al. Organochlorine pesticide residues in archived UK soil. Environ. Sci. Technol. 35, 1989–1995 (2001).

    Article  Google Scholar 

  153. Bidleman, T. F. & Leone, A. D. Soil–air exchange of organochlorine pesticides in the southern United States. Environ. Pollut. 128, 49–57 (2004).

    Article  Google Scholar 

  154. Kannan, K. et al. Trace organic contaminants, including toxaphene and trifluralin, in cotton field soils from Georgia and South Carolina, USA. Arch. Environ. Contam. Toxicol. 45, 30–36 (2003).

    Article  Google Scholar 

  155. Ge, J., Woodward, L. A., Li, Q. X. & Wang, J. Composition, distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll, North Pacific Ocean. Sci. Total Environ. 452–453, 421–426 (2013).

    Article  Google Scholar 

  156. Toan, V. D., Thao, V. D., Walder, J., Schmutz, H. R. & Ha, C. T. Contamination by selected organochlorine pesticides (OCPs) in surface soils in Hanoi, Vietnam. Bull. Environ. Contam. Toxicol. 78, 195–200 (2007).

    Article  Google Scholar 

  157. Klánová, J. et al. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ. Pollut. 152, 416–423 (2008).

    Article  Google Scholar 

  158. Negoita, T. G., Covaci, A., Gheorghe, A. & Schepens, P. Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast. J. Environ. Monit. 5, 281–286 (2003).

    Article  Google Scholar 

  159. Borghini, F., Grimalt, J. O., Sanchez-Hernandez, J. C. & Bargagli, R. Organochlorine pollutants in soils and mosses from Victoria Land (Antarctica). Chemosphere 58, 271–278 (2005).

    Article  Google Scholar 

  160. Wang, D., Ma, H., Chen, Z. & Shi, G. Occurrences and possible sources of persistent organic pollutants (POPs) in ice-free area soils in East Antarctica. Catena 212, 106083 (2022).

    Article  Google Scholar 

  161. Zhang, H. S. et al. Occurrence of organochlorine pollutants in the eggs and dropping-amended soil of Antarctic large animals and its ecological significance. Sci. China D 50, 1086–1096 (2007).

    Article  Google Scholar 

  162. Zhang, Q. et al. Occurrence of organochlorine pesticides in the environmental matrices from King George Island, West Antarctica. Environ. Pollut. 206, 142–149 (2015).

    Article  Google Scholar 

  163. Růžičková, P., Klánová, J., Čupr, P., Lammel, G. & Holoubek, I. An assessment of air–soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environ. Sci. Technol. 42, 179–185 (2008).

    Article  Google Scholar 

  164. Cabrerizo, A., Dachs, J., Barceló, D. & Jones, K. C. Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses. Environ. Sci. Technol. 46, 1396–1405 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (42107390, to X.Z.), Gansu Provincial Key Lab Research Open Project Fund (SZDKFJJ20201204, to X.Z.) from the Northwest Institute of Eco-Environment and Resources, the Second Tibetan Plateau Scientific Expedition and Research (STEP) programme (2019QZKK0605, to Xiaoping Wang), the NSFC–Horizon joint programme (31861133003, to R.J.) and the Alliance of International Science Organizations (ANSO-CR-KP-2021-05, to G.Z.). China Scholarship Council sponsored X.Z.’s earlier doctoral study and research in Germany to collect the urban soil data. SEP Analytical Shanghai Co Ltd provided instrumental support for selected samples. The initiation of this study was supported by Fudan University’s internal grants to Z.W.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was carried out by X.Z., Z.W. and J.S. Methodology was carried out by J.S., X.Z., A.S., R.J., G.Z. and M.F. Investigation was carried out by X.Z., Q.G., F.Y., Z.L., Xiaoping Wang, Xiaofei Wang, Y.C., X.Y., L.W., J.C. and B.X. Sampling was carried out by S.M., T.Z., C.L. and X.Z. Visualization was carried out by X.Z. and F.Y. Writing was carried out by X.Z., M.F., Z.W. and J.S. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Zimeng Wang or Jan Schwarzbauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Hans Richnow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Location and quantified HOC results of each permafrost sample.

(a) Sampling sites of this work. See Supplementary Table 1 for further information on the samples. Permafrost zonation data from refs. 63,64. (b) The HOC (halogenated organic chemicals) levels as EF (extractable fraction) and NER (nonextractable residues) in the surface permafrost soils. (c) Vertical distribution of five HOC groups as EF and NER.

Source data

Extended Data Fig. 2 Illustration of HOC molecules detected in this work.

HOC (halogenated organic chemicals) molecules detected (a) in the Tibetan Plateau permafrost soils and (b) in Bitterfelfd-Wolfen soils. Note that each HOC molecular structure is an exemplifying one out of its other isomers (if at all). EF, extractable fraction; NER, nonextractable residues. The suspected moieties obtained by different bond cleavage indicate that these NER-HOC are possible to be previously bound with soil organic matter via covalent bonds because different chemical treatment steps cleave different target bonds and release HOC containing the corresponding functional groups (to be specific, ester/amide bond-cleavage results in hydroxyl, amine, and carboxyl; ether bond-cleavage results in hydroxyl and bromine substitution; unsaturated C-C bound-cleavage results in carbonyl). Note that this is applicable only when NER-HOC is detected in the corresponding chemical treatment step.

Source data

Extended Data Fig. 3 Distribution and incorporating ways of HOC.

(a) Distribution and incorporating ways of five HOC (halogenated organic chemicals) groups in the surface samples of the Tibetan Plateau permafrost (the left panel, the data are arithmetic means for the pie charts (n = 23), in the subsurface samples (10–60 cm depth) of the Tibetan Plateau permafrost (the middle panel, the data are arithmetic means for each pie chart (n = 10, two profiles, five depths each)), and in the surface soils from the industrial megasite Bitterfeld-Wolfen (the right panel, the data are arithmetic means for each pie chart (n = 2). EF, extractable fraction; NER, nonextractable residues. (b) Our hypothetical ways of different groups of NER-HOC (nonextractable HOC) incorporating into soil substances based on the results of the surface samples of the Tibetan Plateau permafrost. The moieties of each covalently bound NER-HOC and the associated soil organic matter (SOM) macromolecules are colored in pink and blue, respectively. Note that the illustrated molecules are random exemplifying HOC of each group.

Source data

Extended Data Fig. 4 Pearson correlation analysis.

(a) Pearson correlation analysis of HOC (halogenated organic chemicals) molecular descriptors to their log (EF/NER) (logarithm of 10), (EF, extractable fraction; NER, nonextractable residues). (b) Pearson correlation analysis of sample properties (total organic carbon (TOC) content and the sampling location topography) to HOC concentrations and log (EF/NER). Smaller distances of sampling sites from Mt Zuoqiupu, Mt Everest, and Mt Muztagata indicate higher impacts of tropical monsoon, Indian monsoon, and westerly wind, respectively. No mathematical correction was made for multiple comparisons. p-values (two-tailed) are illustrated in the upper triangular of each panel. A significant mark (*) is labelled when the p-value is lower than 0.05 (threshold of significance).

Source data

Extended Data Fig. 5 Risk levels of Tibetan HOC.

Induced environmental risk of HOC (halogenated organic chemicals) by NER (nonextractable residues) data in the Tibetan Plateau permafrost. The HOC with no blue dot are those with no detection in their EF (extractable fraction). The soil screening levels of both compounds are collected from US EPA Regional Screening Levels (RSLs) - Generic Tables (target cancer risk = 1E-06, hazard quotients = 0.1, U.S. EPA, https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Source data

Extended Data Fig. 6 Vertical distribution of HOC.

(a) Vertical distribution of five HOC (halogenated organic chemicals) groups with different origins in two soil profiles (S6 profile and S7 profile) from the Tibetan Plateau. (b) Percentage distribution of different sourced HOC as EF (extractable fraction) and as NER (nonextractable residues) at various depths in two soil profiles (S6 profile and S7 profile) from the Tibetan Plateau. (c) Vertical distribution of three pesticide HOC (insecticide HCH (hexachlorocyclohexane), antimicrobial trichloropyridinamine, herbicide simazine) in the two Tibetan permafrost.

Source data

Extended Data Fig. 7 Distribution of HOC and different organic halogens in surface soils.

(a) and (b) are the distribution of each HOC (as EF (extractable fraction), covalently bound NER (nonextractable residues), and physically bound NER) in five groups of the HOC categories in the surface soils from Tibetan Plateau and Bitterfeld-Wolfen, respectively. Boxplots show the median (the horizontal lines), the first to third quartiles (the lower and upper hinges), and the 1.5×interquartile ranges (whiskers). The integrated pathways and amounts of the degradation products of some well-known HOC (halogenated organic chemicals) commonly detected in the surface soils from (c) the Tibetan Plateau (n = 23) and (d) Bitterfeld-Wolfen (n = 2). The pathways are adapted from Schwarzbauer and Jovančićević (2018); Ricking and Schwarzbauer (2008); Scheunert (1994); Middeldorp et al. (1996); Quintero (2005); Parlar and Angerhöfer (1995)19,78,79,80,81,82. (e) Distribution of organic halogens in the surface soils from the Tibetan Plateau (arithmetic means, n = 23) and Bitterfeld-Wolfen (arithmetic means, n = 2). Each organic halogen content was calculated by multiplying the concentrations of the corresponding HOC (EF + NER) respectively by their halogen mass to molecular weight ratios. Note that the calculated total organic halogen content does not necessarily agree with the soil organic halogen content, as our method cannot guarantee complete separation of all soil organic matter.

Source data

Extended Data Fig. 8 NER assignment and comparison of HOC from the two sites.

(a) NER (nonextractable residues) categorization scheme, as highly possible covalently bound NER, potential covalently bound NER, and affirmatory physically entrapped NER. Note that organobromines detected solely after BBr3 treatment are pre-excluded from the HOC screening list before categorization. (b) Half violin plot showing the number of HOC (halogenated organic chemicals) detected in two randomly selected samples in our Tibetan Plateau surface soil sample set, n = 253. (c) Distribution of EF (extractable fraction), highly possible covalently bound NER, potential covalently bound NER, and affirmatory physically entrapped NER for all HOC and the five HOC groups in samples from the Tibetan Plateau (surface samples, n = 23; subsurface samples, n = 10) and from Bitterfeld- Wolfen (surface samples, n = 2).

Source data

Extended Data Fig. 9 Remobilization of HOC from the Permafrost samples.

(a) Changes of the concentrations of EF-HOC (extractable halogenated organic chemicals) in incubated soils (S15, S18, and Sterilized S18) under slightly increased temperature conditions (mean ± s.d., n = 3). (b) Remobilization levels of previous covalently bound (the upper panel) and physically entrapped (the lower panel) NER-HOC (nonextractable HOC) (mean ± s.d., n = 3, the error bars represent the s.d. of sum of the five HOC groups).

Source data

Extended Data Fig. 10 Comparison of EF-HOC (extractable halogenated organic chemicals) levels in global and Tibetan Plateau soils.

Literature hexachlorocyclohexane (HCH) (a) and hexachlorobenzene (HCB) (b) EF levels in global soils (the left panels) and in Tibetan Plateau soils (the right panels)4,13,14,52,53,54,55,56,57,58,59,62,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164. Note that the literature data with no detection of either compounds or below their detection limits are not illustrated.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1, 4 and 6, and legends for separate Supplementary Tables 2, 3 and 5.

Supplementary Tables 2, 3 and 5

Supplementary Tables 2, 3 and 5.

Source data

Source Data Fig. 2

Numerical source data

Source Data Fig. 3

Numerical source data

Source Data Fig. 4

Numerical source data

Source Data Fig. 5

Numerical source data

Source Data Fig. 6

Numerical source data

Source Data Extended Data Fig. 1

Numerical source data

Source Data Extended Data Fig. 2

Numerical source data

Source Data Extended Data Fig. 3

Numerical source data

Source Data Extended Data Fig. 4

Numerical source data

Source Data Extended Data Fig. 5

Numerical source data

Source Data Extended Data Fig. 6

Numerical source data

Source Data Extended Data Fig. 7

Numerical source data

Source Data Extended Data Fig. 8

Numerical source data

Source Data Extended Data Fig. 9

Numerical source data

Source Data Extended Data Fig. 10

Numerical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Yang, F., Li, Z. et al. Substantial halogenated organic chemicals stored in permafrost soils on the Tibetan Plateau. Nat. Geosci. 16, 989–996 (2023). https://doi.org/10.1038/s41561-023-01293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01293-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing