Article | Published:

Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision


Collision and disruption processes of protoplanetary bodies in the early Solar System are key to understanding the genesis of diverse types of main-belt asteroids. Mesosiderites are stony-iron meteorites that formed by the mixing of howardite–eucrite–diogenite-like crust and molten core materials and provide unique insights into the catastrophic break-up of differentiated asteroids. However, the enigmatic formation process and the poorly constrained timing of metal–silicate mixing complicate the assignment to potential parent bodies. Here we report the high-precision uranium–lead dating of mesosiderite zircons by isotope dilution thermal ionization mass spectrometry to reveal an initial crust formation 4,558.5 ± 2.1 million years ago and metal–silicate mixing at 4,525.39 ± 0.85 million years ago. The two distinct ages coincide with the timing of the crust formation and a large-scale reheating event on the eucrite parent body, probably the asteroid Vesta. This chronological coincidence corroborates that Vesta is the parent body of mesosiderite silicates. Mesosiderite formation on Vesta can be explained by a hit-and-run collision 4,525.4 million years ago that caused the thick crust observed by NASA’s Dawn mission and explains the missing olivine in mesosiderites, howardite–eucrite–diogenite meteorites and vestoids.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Wasson, J. T. & Rubin, A. E. Formation of mesosiderites by low-velocity impacts: a natural consequence of planet formation. Nature 318, 168–170 (1985).

  2. 2.

    Hassanzadeh, J., Rubin, A. E. & Wasson, J. T. Compositions of large metal nodules in mesosiderites: links to iron meteorite groups IIIAB and the origin of mesosiderite subgroups. Geochim. Cosmochim. Acta 54, 3197–3208 (1990).

  3. 3.

    Scott, E. R. D., Haack, H. & Love, S. G. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sci. 36, 869–881 (2001).

  4. 4.

    Mittlefehldt, D. W., Chou, C.-L. & Wasson, J. T. Mesosiderites and howardites: Igneous formation and possible genetic relationships. Geochim. Cosmochim. Acta 43, 673–688 (1979).

  5. 5.

    Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A. & Burbine, T. H. Oxygen isotope variation in stony-iron meteorites. Science 313, 1763–1765 (2006).

  6. 6.

    Trinquier, A., Birck, J.-L. & Allègre, C. G. Widespread 54Cr heterogeneities in the inner Solar System. Astrophys. J. 655, 1179–1185 (2007).

  7. 7.

    Trinquier, A., Birck, J.-L., Allegre, C.-J., Göpel, C. & Ulfbeck, D. 53Mn–53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008).

  8. 8.

    McCord, T. B., Adams, J. B. & Johnson, T. V. Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970).

  9. 9.

    De Sanctis, M. C. et al. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700 (2012).

  10. 10.

    Prettyman, T. H. et al. Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science 338, 242–246 (2012).

  11. 11.

    Rubin, A. E. & Mittlefehldt, D. W. Evolutionary history of the mesosiderite asteroid: a chronologic and petrologic synthesis. Icarus 101, 201–212 (1993).

  12. 12.

    Stewart, B. W., Papanastassiou, D. A. & Wasserburg, G. J. Sm–Nd chronology and petrogenesis of mesosiderites. Geochim. Cosmochim. Acta 58, 3487–3509 (1994).

  13. 13.

    Ireland, T. R. & Wlotzka, F. The oldest zircons in the Solar System. Earth Planet. Sci. Lett. 109, 1–10 (1992).

  14. 14.

    Haba, M. K., Yamaguchi, A., Kagi, H., Nagao, K. & Hidaka, H. Trace element composition and U–Pb age of zircons from Estherville: constraints on the timing of the metal–silicate mixing event on the mesosiderite parent body. Geochim. Cosmochim. Acta 215, 76–91 (2017).

  15. 15.

    Koike, M., Sugiura, N., Takahata, N., Ishida, A. & Sano, Y. U–Pb and Hf–W dating of young zircon in mesosiderite Asuka 882023. Geophys. Res. Lett. 44, 1251–1259 (2017).

  16. 16.

    Vermeesch, P. Dissimilarity measures in detrital geochronology. Earth Sci. Rev. 178, 310–321 (2018).

  17. 17.

    Hewins, R. H. The case for a melt matrix in plagioclase–POIK mesosiderites. J. Geophys. Res. 89, C289–C297 (1984).

  18. 18.

    Delaney, J. S., Nehru, C. E., Prinz, M. & Harlow, G. E. In Proc. Lunar Planet. Sci. Conf. 12th, 1315–1342 (Pergamon, 1981).

  19. 19.

    Prinz, M., Nehru, C. E., Delaney, J. S., Harlow, G. E. & Bedell, R. L. In Proc. Lunar Planet. Sci. Conf. 11th, 1055–1071 (Pergamon, 1980).

  20. 20.

    Delaney, J. S., Prinz, M. & Takeda, H. The polymict eucrites. J. Geophys. Res. 89 (Suppl.), C251–C288 (1984).

  21. 21.

    Harlow, G. E., Delaney, J. S., Nehru, C. E. & Prinz, M. Metamorphic reactions in mesosiderites: origin of abundant phosphate and silica. Geochim. Cosmochim. Acta 46, 339–348 (1982).

  22. 22.

    Rubin, A. E. & Mittlefehldt, D. W. Classification of mafic clasts from mesosiderites: implications for endogenous igneous processes. Geochim. Cosmochim. Acta 56, 827–840 (1992).

  23. 23.

    Misawa, K., Yamaguchi, A. & Kaiden, H. U–Pb and 207Pb–206Pb ages of zircons from basaltic eucrites: implications for early basaltic volcanism on the eucrite parent body. Geochim. Cosmochim. Acta 69, 5847–5861 (2005).

  24. 24.

    Zhou, Q. et al. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at <5 mm scale and the first 50 Ma of the thermal history of Vesta. Geochim. Cosmochim. Acta 110, 152–175 (2013).

  25. 25.

    Iizuka, T. et al. Timing of global crustal metamorphism on Vesta as revealed by high-precision U–Pb dating and trace element chemistry of eucrite zircon. Earth Planet. Sci. Lett. 409, 182–192 (2015).

  26. 26.

    Hopkins, M., Mojzsis, S., Bottke, W. & Abramov, O. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus 245, 367–378 (2015).

  27. 27.

    Srinivasan, G., Whitehouse, M. J., Weber, I. & Yamaguchi, A. The crystallization age of eucrite zircon. Science 317, 345–347 (2007).

  28. 28.

    Ireland, T. R., Saiki, K. & Takeda, H. In 23rd Lunar Planet. Sci. Conf. abstr. 569–570 (Lunar and Planetary Institute, 1992).

  29. 29.

    Roszjar, J. et al. Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon. Earth Planet. Sci. Lett. 452, 216–226 (2016).

  30. 30.

    Roszjar, J. et al. Thermal history of Northwest Africa (NWA) 5073—a coarse grained Stannern-trend eucrite containing cm-sized pyroxenes and large zircon grains. Meteor. Planet. Sci. 46, 1754–1773 (2011).

  31. 31.

    Shukolyukov, A. & Begemann, F. Pu–Xe dating of eucrites. Geochim. Cosmochim. Acta 60, 2453–2480 (1996).

  32. 32.

    Premo, W. R. & Tatsumoto, M. In Proc. 22nd Lunar Planet. Sci. Conf. 381–397 (Lunar and Planetary Institute, 1992).

  33. 33.

    Haba, M. K., Yamaguchi, A., Horie, K. & Hidaka, H. Major and trace elements of zircons from basaltic eucrites: implications for the formation of zircons on the eucrite parent body. Earth Planet. Sci. Lett. 387, 10–21 (2014).

  34. 34.

    Carter, P. J., Leinhardt, Z. M., Elliott, T., Stewart, S. T. & Walter, M. J. Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018).

  35. 35.

    Asphaug, E. Similar-sized collisions and the diversity of planets. Chem. Erde Geochem. 70, 199–219 (2010).

  36. 36.

    Ammannito, E. et al. Olivine in an unexpected location on Vesta’s surface. Nature 504, 122–125 (2013).

  37. 37.

    Ruesch, O. et al. Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. J. Geophys. Res. Planets 119, 2078–2108 (2014).

  38. 38.

    Clenet, H. et al. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature 511, 303–306 (2014).

  39. 39.

    Ruzicka, A., Snyder, G. A. & Taylor, L. Vesta as the HED parent body: implications for the size of a core and for large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997).

  40. 40.

    Mandler, B. E. & Elkins-Tanton, L. T. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2333–2349 (2013).

  41. 41.

    Barrat, J.-A., Yamaguchi, A., Zanda, B., Bollinger, C. & Bohn, M. Relative chronology of crust formation on asteroid Vesta: insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218–6231 (2010).

  42. 42.

    Consolmagno, G. J. et al. Is Vesta an intact and pristine protoplanet? Icarus 254, 190–201 (2015).

  43. 43.

    Hopfe, W. D. & Goldstein, J. I. The metallographic cooling rate method revised: application to iron meteorites and mesosiderites. Meteorit. Planet. Sci. 36, 135–154 (2001).

  44. 44.

    Bogard, D. D. & Garrison, D. H. 39Ar–40Ar ages and thermal history of mesosiderites. Geochim. Cosmochim. Acta 62, 1459–1468 (1990).

  45. 45.

    Schenk, P. et al. The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012).

  46. 46.

    Jutzi, M., Asphang, E., Gillet, P., Barrat, J.-A. & Benz, W. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207–210 (2013).

  47. 47.

    Binzel, R. P. & Xu, S. Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993).

  48. 48.

    Nesvorný, D. et al. Fugitives from the Vesta family. Icarus 193, 85–95 (2008).

  49. 49.

    Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

  50. 50.

    Krogh, T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 488–494 (1973).

  51. 51.

    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

  52. 52.

    von Quadt, A. et al. High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors. J. Anal. Spectrom. 31, 658–665 (2016).

  53. 53.

    Wotzlaw, J. F., Buret, Y., Large, S. J. E., Szymanowski, D. & von Quadt, A. ID-TIMS U–Pb geochronology at the 0.1‰ level using 1013 Ω resistors and simultaneous U and 18O/16O isotope ratio determination for accurate UO2 interference correction. J. Anal. Spectrom. 32, 579–586 (2017).

  54. 54.

    Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. 12, Q0AA19 (2011).

  55. 55.

    McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).

  56. 56.

    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

  57. 57.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

  58. 58.

    Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012).

Download references


The authors thank H. Genda for insightful discussions. M.K.H. acknowledges support from JSPS Postdoctoral Fellowship for Research Abroad (No. 27-699), J.F.W. from ETH Zurich postdoctoral fellowship program (FEL-14-09), Y.-J.L., and M.S. from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement No. [279779] and the Swiss National Science Foundation (Project 200021_149282), and A.Y. from NIPR Research Project KP307.

Author information

M.K.H. and M.S. designed the research. M.K.H., Y.-J.L. and A.Y. prepared the zircon samples. J.-F.W. performed U–Pb dating of zircons. M.K.H. took the lead in writing the manuscript. All the authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Makiko K. Haba.

Supplementary information

  1. Supplementary Information

  2. Supplementary Table 1

  3. Supplementary Table 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: 207Pb–206Pb dates for mesosiderite zircons.
Fig. 2: Histograms and kernel density estimates of mesosiderite zircon dates and various dates of basaltic eucrite.
Fig. 3: Mesosiderite formation on Vesta in an internal-origin model that adopts a hit-and-run collision.
Fig. 4: Crust evolution in the south pole region.