Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A micrometeorite from a stony asteroid identified in Luna 16 soil

Abstract

Despite the intense cratering history of the Moon, very few traces of meteoritic material have been identified in the more than 380 kg of samples returned to Earth by the Apollo and Luna missions. Here we show that an ~200-µm-sized fragment collected by the Luna 16 mission has extra-lunar origins and probably originates from an LL chondrite with similar properties to near-Earth stony asteroids. The fragment has not experienced temperatures higher than 400 °C since its protolith formed early in the history of the Solar System. It arrived on the Moon, either as a micrometeorite or as the result of the break-up of a bigger impact, no earlier than 3.4 Gyr ago and possibly around 1 Gyr ago, an age that would be consistent with impact ages inferred from basaltic fragments in the Luna 16 sample and of a known dynamic upheaval in the Flora asteroid family, which is thought to be the source of L and LL chondrite meteorites. These results highlight the importance of extra-lunar fragments in constraining the impact history of the Earth–Moon system and suggest that material from LL chondrite asteroids may be an important component.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BSE image of Luna 16 soil fragment #443.
Fig. 2: Mineral chemistry of fragment #443.
Fig. 3: Isotope data from Luna 16 fragment #443.
Fig. 4: In situ U–Pb dating of a phosphate in the #443 chondrite fragment.
Fig. 5: Olivine and low-Ca pyroxene composition in fragment #443 compared with H, L and LL chondrites.
Fig. 6: Modal and compositional characteristics of OCs of petrologic types 4–6 and fragment #443.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Misra, K. & Taylor, L. A. Characteristics of metal particles in Apollo 16 rocks. Proc. Lunar Planet. Sci. Conf. 6, 615–639 (1975).

    ADS  Google Scholar 

  2. Joy, K. H. et al. The Moon: an archive of small body migration in the Solar System. Earth Moon Planets 118, 133–158 (2016).

    Article  ADS  Google Scholar 

  3. Wood, J. A. et al. Mineralogy and Petrology of the Apollo 12 Lunar Sample Special Report 333; 177–184 (Smithsonian Astrophysical Observatory, 1971).

  4. Haggerty, S. E. In The Apollo 15 Lunar Samples (ed. Chamberlain, J. W.) 85–87 (Lunar Science Institute, 1972).

  5. Bischoff, A. & Stöffler, D. Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur. J. Mineral. 4, 707–755 (1992).

    Article  ADS  Google Scholar 

  6. Simon, S. B., Papike, J. J. & Laul, J. C. The lunar regolith: comparative studies of the Apollo and Luna sites. Petrology of soils from Apollo 17, Luna 16, 20, and 24. Proc. Lunar Planet. Sci. Conf. 12, 371–388 (1981).

    ADS  Google Scholar 

  7. Stöffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Article  ADS  Google Scholar 

  8. Fritz, J., Greshake, D. & Stöffler, D. Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: evidence of progressive shock metamorphism. Antarct. Meteor. Res. 18, 96–116 (2005).

    ADS  Google Scholar 

  9. Glass, B. P. & Fries, M. Micro‐Raman spectroscopic study of fine‐grained, shock‐metamorphosed rock fragments from the Australasian microtektite layer. Meteorit. Planet. Sci. 43, 487–1496 (2008).

    Article  Google Scholar 

  10. Farrel-Turner, S., Reimold, W. U., Niewoudt, M. & Erasmus, R. M. Raman spectroscopy of olivine in dunite experimentally shocked to pressures between 5 and 59 GPa. Meteorit. Planet. Sci. 40, 1311–1327 (2005).

    Article  ADS  Google Scholar 

  11. Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

    Article  ADS  Google Scholar 

  12. Noguchi, T. et al. Mineralogy of four Itokawa particles collected from the first touchdown site. Earth Planets Space 66, 124 (2014).

    Article  ADS  Google Scholar 

  13. Nazarov, M. A., Ntaflos, Th., Brandstätter, F. & Kurat, G. FeO/MnO ratios of lunar meteorite minerals. In 40th Lunar and Planetary Science Conference 1059 (Lunar and Planetary Institute, 2009).

  14. Galimov, E. M. et al. Analytical results for the material of the Chelyabinsk meteorite. Geochem. Int. 51, 522–539 (2013).

    Article  Google Scholar 

  15. Niihara, T., Yokoyama, T., Arai, T. & Misawa, K. Petrology and mineralogy of an igneous clast in the northwest Africa 1685 (LL4) chondrite: comparison with alkali-rich igneous clasts in LL-chondritic breccias. Meteorit. Planet Sci. 56, 1619–1625 (2021).

    Article  ADS  Google Scholar 

  16. Mikouchi, T. et al. Mineralogy and crystallography of some Itokawa particles returned by the Hayabusa asteroidal sample return mission. Earth Planets Space 66, 82 (2014).

    Article  ADS  Google Scholar 

  17. Warren, P. H. A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360–376 (1993).

    ADS  Google Scholar 

  18. Semenova, A. S., Kononkova, N. N. & Guseva, E. V. Olivine-hypersthene chondrite in Luna 16 soil. In 21st Lunar and Planetary Science Conference 1126–1127 (Lunar and Planetary Institute, 1990).

  19. Snape, J. F. et al. Phosphate ages in Apollo 14 breccias: resolving multiple impact events with high precision U–Pb SIMS analyses. Geochim. Cosmochim. Acta 174, 13–29 (2016).

    Article  ADS  Google Scholar 

  20. Connelly, J. N., Bollard, J. & Bizzarro, M. Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta 201, 345–363 (2017).

    Article  ADS  Google Scholar 

  21. Merle, R. et al. Exploring the efficiency of stepwise dissolution in removal of stubborn non-radiogenic Pb in chondrule U–Pb dating. Geochim. Cosmochim. Acta 277, 1–20 (2020).

    Article  ADS  Google Scholar 

  22. Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).

    Article  ADS  Google Scholar 

  23. Yurimoto, H. et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333, 1116–1119 (2011).

    Article  ADS  Google Scholar 

  24. Nakashima, D. et al. Oxygen three-isotope ratios of silicate particles returned from asteroid Itokawa by the Hayabusa spacecraft: a strong link with equilibrated LL chondrites. Earth Planet. Sci. Lett. 379, 127–136 (2013).

    Article  ADS  Google Scholar 

  25. Van Schmus, W. R. & Wood, J. A. A chemical–petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–765 (1967).

    Article  ADS  Google Scholar 

  26. Rubin, A. E. Kamacite and olivine in ordinary chondrites: intergroup and intragroup relationships. Geochim. Cosmochim. Acta 54, 1217–1232 (1990).

    Article  ADS  Google Scholar 

  27. McSween, H. Y. & Labotka, T. C. Oxidation during metamorphism of the ordinary chondrites. Geochim. Cosmochim. Acta 57, 1105–1114 (1993).

    Article  ADS  Google Scholar 

  28. Dunn, T. L., McSween, H. Y. Jr., McCoy, T. J. & Cressey, G. Analysis of ordinary chondrites using powder X-ray diffraction: 2. Applications to ordinary chondrite parent-body processes. Meteorit. Planet. Sci. 45, 135–156 (2010).

    ADS  Google Scholar 

  29. Rubin, A. E. Relationships among intrinsic properties of ordinary chondrites: oxidation state, bulk chemistry, oxygen-isotopic composition, petrologic type, and chondrule size. Geochim. Cosmochim. Acta 69, 4907–4918 (2005).

    Article  ADS  Google Scholar 

  30. Moyano-Cambero C. E. et al. In Assessment and Mitigation of Asteroid Impact Hazards (eds. Trigo-Rodríguez, J. M., Gritsevich, M. & Palme, H.) 219–241 (Springer, 2017).

  31. Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).

    Article  ADS  Google Scholar 

  32. Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).

    Article  ADS  Google Scholar 

  33. Swindle, T. D., Kring, D. A. & Weirich, J. R. In Advances in 40Ar/39Ar Dating: from Archaeology to Planetary Sciences (eds. Jaurdan, F., Marc, D. & Vérati, C.) 333–347 (Geological Society of London, 2014).

  34. Pierazzo, E. & Melosh, H. J. Understanding oblique impacts from experiments, observations, and modeling. Annu. Rev. Earth Planet. Sci. 28, 141–167 (2000).

    Article  ADS  Google Scholar 

  35. Daly, R. T. & Schultz, P. H. Experimental studies into the survival and state of the projectile. In 44th Lunar and Planetary Science Conference 2240 (Lunar and Planetary Institute, 2013).

  36. Chamberlain, K. R. & Bowring, S. A. Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (~450 °C), diffusion controlled system. Chem. Geol. 172, 73–200 (2000).

    Google Scholar 

  37. Papanastassiou, D. A. & Wasserburg, G. J. Rb–Sr age of a Luna 16 basalt and the model age of lunar soils. Earth Planet. Sci. Lett. 13, 368–374 (1972).

    Article  ADS  Google Scholar 

  38. Cohen, B. A., Snyder, G. A., Hall, C. M., Taylor, L. A. & Nazarov, M. A. Argon-40–argon-39 chronology and petrogenesis along the eastern limb of the Moon from Luna 16, 20 and 24 samples. Meteorit. Planet. Sci. 36, 1345–1366 (2001).

    Article  ADS  Google Scholar 

  39. Tsuchiyama, A. Asteroid Itokawa a source of ordinary chondrites and a laboratory for surface processes. Elements 10, 45–50 (2015).

    Article  ADS  Google Scholar 

  40. Park, J. et al. 40Ar/39Ar age of material returned from asteroid 25143 Itokawa. Meteorit. Planet. Sci. 50, 2087–2098 (2015).

    Article  ADS  Google Scholar 

  41. Terada, K. et al. Thermal and impact historyies of 25143 Itokawa recorded in Hayabusa particles. Sci. Rep. 8, 11806 (2018).

    Article  ADS  Google Scholar 

  42. Dykhuis, M. J., Molnar, L., Van Kooten, S. J. & Greenberg, R. Defining the Flora family: Orbital properties, reflectance properties and age. Icarus 243, 111–128 (2014).

    Article  ADS  Google Scholar 

  43. Tsuchiyama, A. et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333, 1125–1128 (2011).

    Article  ADS  Google Scholar 

  44. Nagao, K. et al. Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333, 1128–1131 (2011).

    Article  ADS  Google Scholar 

  45. Tatsumi, E. & Sugita, S. Cratering efficiency on coarse-grain targets: implications for the dynamical evolution of asteroid 25143 Itokawa. Icarus 300, 227–248 (2018).

    Article  ADS  Google Scholar 

  46. Tanbakouei, S. et al. Mechanical properties of particles from the surface of asteroid 25143 Itokawa. Astron. Astrophys. 629, A119 (2019).

  47. The Meteoritical Bulletin Database (The Meteoritical Society, accessed 1 July 2021); https://www.lpi.usra.edu/meteor/metbull.php

  48. Genge, M. J., Engrand, C., Gounelle, M. & Taylor, S. Micrometeorites: insights into the flux, sources and atmospheric entry of extraterrestrial dust at Earth. Planet. Space Sci. 187, 104900 (2020).

    Article  Google Scholar 

  49. Hallis, L. J. et al. The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim. Cosmochim. Acta 74, 6885–6899 (2010).

    Article  ADS  Google Scholar 

  50. Dunn, T. L., Cressey, G., Mcsween, H. Y. Jr. & McCoy, T. J. Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteorit. Planet. Sci. 45, 123–134 (2010).

    ADS  Google Scholar 

  51. Nemchin, A. A. et al. Record of the ancient Martian hydrosphere and atmosphere preserved in zircon from a Martian meteorite. Nat. Geosci. 7, 638–642 (2014).

    Article  ADS  Google Scholar 

  52. Whitehouse, M. J. & Nemchin, A. A. High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chem. Geol. 261, 32–42 (2009).

    Article  ADS  Google Scholar 

  53. Kita, N. T. et al. High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta 74, 6610–6635 (2010).

    Article  ADS  Google Scholar 

  54. Eiler, J. M., Graham, C. & Valley, J. W. SIMS analysis of oxygen isotopes: matrix effects in complex minerals and glasses. Chem. Geol. 138, 221–244 (1997).

    Article  ADS  Google Scholar 

  55. Duggen, S. et al. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim. Cosmochim. Acta 71, 452–480 (2007).

    Article  ADS  Google Scholar 

  56. Yarosewich, E. J., Nelen, J. A. & Norberg, J. A. Reference sample for electron microprobe analysis. Geostand. Newsl. 4, 43–47 (1980).

    Article  Google Scholar 

  57. Isa, J. et al. Quantification of oxygen isotope SIMS matrix effects in olivine samples: correlation with sputter rate. Chem. Geol. 458, 14–21 (2017).

    Article  ADS  Google Scholar 

  58. Deegan, F. M. et al. Pyroxene standards for SIMS oxygen isotope analysis and their application to Merapi Volcano, Sunda arc, Indonesia. Chem. Geol. 447, 1–10 (2016).

    Article  ADS  Google Scholar 

  59. Whitehouse, M. J. Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand. Geoanal. Res. 37, 19–33 (2013).

    Article  Google Scholar 

  60. Liseroudi, M. H. et al. Microbial and thermochemical controlled sulfur cycle in the Early Triassic sediments of the Western Canadian Sedimentary Basin. J. Geol. Soc. 178, jgs2020-175 (2021).

    Article  Google Scholar 

  61. Crowe, D. E. & Vaughan, R. G. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios. Am. Mineral. 81, 187–193 (1996).

    Article  ADS  Google Scholar 

  62. Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013).

    Article  ADS  Google Scholar 

  63. Whitehouse, M. J., Kamber, B. S., Fedo, C. M. & Lepland, A. The importance of combined Pb and S isotope data from early Archaean rocks, southwest Greenland, for the interpretation of S-isotope signatures. Chem. Geol. 222, 112–131 (2005).

    Article  ADS  Google Scholar 

  64. Baublys, K. A., Golding, S. D., Young, E. & Kamber, B. S. Simultaneous determination of δ33SV‐CDT and δ34SV‐CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Commun. Mass Spectrom. 18, 2765–2769 (2004).

    Article  ADS  Google Scholar 

  65. Woodhead, J. D. & Hergt, J. M. Pb‐isotope analyses of USGS reference materials. Geostand. Newsl. 24, 33–38 (2000).

    Article  Google Scholar 

  66. Grange, M. L. et al. Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochim. Cosmochim. Acta 73, 3093–3107 (2009).

    Article  ADS  Google Scholar 

  67. Stern, R. A. & Amelin, Y. Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem. Geol. 197, 111–142 (2003).

    Article  ADS  Google Scholar 

  68. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  ADS  Google Scholar 

  69. Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Kirally (Vienna University) and D. Topa (NHM Vienna) for their help with microprobe analyses. S.I.D. acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039). M.J.W., A.A.N. and R.M. acknowledge support from Swedish Research Council (VR) grants 2017-04151 and 2020-03828. The NordSIMS facility is supported by VR research infrastructure grant 2017-00671; this is NordSIMS publication 704.

Author information

Authors and Affiliations

Authors

Contributions

S.I.D. initiated the investigation of the fragment. F.B., Th.N. and S.I.D. conducted the chemical characterization of mineral phases. G.G.K., R.M. and S.I.D. contributed to the SEM mapping of the sample; I.D. performed the Raman analyses. M.J.W. and R.M. conducted the SIMS isotopic studies. S.I.D. produced the first draft of the manuscript. M.J.W., A.A.N. and R.M. contributed writing the final version of the manuscript. All authors were involved in discussion and interpretation of the obtained data.

Corresponding author

Correspondence to S. I. Demidova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Josep Trigo-Rodriguez, Thomas Zega and Barbara Cohen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FeO versus MnO contents (wt%) in olivine (a) and pyroxene (b) grains from fragment #443 (in red).

The data from lunar rocks (in black)13, Itokawa particles (in blue)11,12,16 and LL chondrites (in yellow)14,15 are shown for comparison. Figure adapted with permission from ref. 13.

Extended Data Fig. 2 Molar Fe/Mn versus Fe/Mg ratios for olivine and low-Ca pyroxene in #443 fragment (in red).

The data from L (in light violet) and LL chondrites (in yellow)28 (average values for each chondrite) and Itokawa particles (in blue)11,12,16 are shown for reference. Figure adapted with permission from ref. 28, John Wiley & Sons.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–5 and references.

Source data

Source Data Fig. 1

Mineral composition summary.

Source Data Fig. 2

SIMS oxygen isotope data.

Source Data Fig. 3

SIMS U–Pb data.

Source Data Fig. 4

Electron microprobe analysis data of some minerals.

Source Data Fig. 5

Modal composition of the fragment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidova, S.I., Whitehouse, M.J., Merle, R. et al. A micrometeorite from a stony asteroid identified in Luna 16 soil. Nat Astron 6, 560–567 (2022). https://doi.org/10.1038/s41550-022-01623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01623-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing