Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2−x/Ni photothermal catalyst

Abstract

Hydrocarbon fuels can be synthesized from CO and water via Kölbel–Engelhardt synthesis, a thermocatalytic process in which temperatures of ≥200 °C and elevated pressures are typically needed. While light-driven hydrocarbon production by CO hydrogenation has been demonstrated under milder conditions, for this reaction H2 must first be sourced. Here we report the direct production of hydrocarbons from CO and water at atmospheric pressure via light-driven Kölbel–Engelhardt synthesis without external heating or the addition of H2. Using a TiO2-supported Ni catalyst, we obtain an activity of 8.83 molCH2 molNi−1 h−1 and C2+ selectivity higher than 55%. In situ spectroscopy and density functional theory calculations suggest that the migration of photogenerated electrons from TiO2 to Ni facilitates carbon–carbon coupling at the interface of the TiO2x/Ni catalyst, which accounts for the observed high selectivity towards multi-carbon products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization results of the catalyst structure.
Fig. 2: Probing the mechanism of the photothermal catalytic reaction by in situ DRIFTS and in situ ultrafast IR spectroscopy.
Fig. 3: DFT studies on the mechanism of CO hydrogenation.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Rommens, K. T. et al. Molecular views on Fischer–Tropsch synthesis. Chem. Rev. 123, 5798–5858 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, T. et al. Advances in selectivity control for Fischer–Tropsch synthesis to fuels and chemicals with high carbon efficiency. ACS Catal. 12, 12092–12112 (2022).

    Article  CAS  Google Scholar 

  3. Air Quality Guidelines—Second Edition (US Environmental Protection Agency, Office of Research and Development, 2000).

  4. Air Quality Criteria for Carbon Monoxide, Publication No. EPA 600/P-99/001F (US Environmental Protection Agency, Office of Research and Development, 2000).

  5. Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    Article  CAS  Google Scholar 

  6. Yang, C. et al. Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer–Tropsch synthesis catalyst. ACS Catal. 7, 5661–5667 (2017).

    Article  CAS  Google Scholar 

  7. Kölbel, H., Ackermann, P., Ruschenburg, E., Langheim, R. & Engelhardt, F. Beitrag zur Fischer–Tropsch-Synthese an Eisen-Kontakten (Teil I). Chem. Ing. Tech. 23, 153–157 (1951).

    Article  Google Scholar 

  8. Zhang, X. et al. A stable low-temperature H2-production catalyst by crowding Pt on alpha-MoC. Nature 589, 396–401 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yao, S. et al. Atomic-layered Au clusters on alpha-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Xu, M. et al. Insights into interfacial synergistic catalysis over Ni@TiO2–x catalyst toward water–gas shift reaction. J. Am. Chem. Soc. 140, 11241–11251 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Lin, L. et al. Heterogeneous catalysis in water. JACS Au 1, 1834–1848 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, A. et al. Hydrocarbon formation from metal carbonyl clusters supported on highly divided oxides. JACS 100, 2590–2591 (1978).

    Article  CAS  Google Scholar 

  13. Larkins, F. P. & Khan, A. Z. Investigation of Kölbel–Engelhardt synthesis over iron-based catalysts. Appl. Catal. 47, 209–227 (1989).

    Article  CAS  Google Scholar 

  14. Xu, Y. et al. Direct conversion of CO and H2O into liquid fuels under mild conditions. Nat. Commun. 10, 1389 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, Y. et al. Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. Engl. 55, 4215–4219 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Y. et al. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv. Mater. 30, e1803127 (2018).

    Article  Google Scholar 

  17. Zhao, L. et al. Solar-driven water–gas shift reaction over CuOx/Al2O3 with 1.1% of light-to-energy storage. Angew. Chem. Int. Ed. Engl. 58, 7708–7712 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, F. et al. Cu-based mixed metal oxides for an efficient photothermal catalysis of the water–gas shift reaction. Catal. Sci. Technol. 9, 2125–2131 (2019).

    Article  CAS  Google Scholar 

  19. Tong, Y. et al. Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. Appl Catal. B 298, 120551 (2021).

    Article  CAS  Google Scholar 

  20. Xu, M. et al. TiO2–x-modified Ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 7, 7600–7609 (2017).

    Article  CAS  Google Scholar 

  21. Chaffee, A. L. & Loeh, H. J. The Kölbel–Engelhardt reaction over a silica supported nickel catalyst. Variation of product distributions with reaction conditions. Appl. Catal. 26, 123–139 (1986).

    Article  CAS  Google Scholar 

  22. Vannice, M. Metal–support effects on the activity and selectivity of Ni catalysts in CO/H2 synthesis reactions. J. Catal. 56, 236–248 (1979).

    Article  CAS  Google Scholar 

  23. Hernández Mejía, C., Vogt, C., Weckhuysen, B. M. & de Jong, K. P. Stable niobia-supported nickel catalysts for the hydrogenation of carbon monoxide to hydrocarbons. Catal. Today 343, 56–62 (2020).

    Article  Google Scholar 

  24. Ghoussoub, M., Xia, M., Duchesne, P. N., Segal, D. & Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 12, 1122–1142 (2019).

    Article  CAS  Google Scholar 

  25. Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018).

    Article  CAS  Google Scholar 

  26. Kazansky, V. B. & Pidko, E. A. Intensities of IR stretching bands as a criterion of polarization and initial chemical activation of adsorbed molecules in acid catalysis. Ethane adsorption and dehydrogenation by zinc ions in ZnZSM-5 zeolite. J. Phys. Chem. B 109, 2103–2108 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, F. et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 138, 6298–6305 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nat. Commun. 11, 3185 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iyer, V. et al. Infrared ultrafast spectroscopy of solution-grown thin film tellurium. Phys. Rev. B 100, 075436 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Zhou, P. & Han, K. Unraveling the detailed mechanism of excited-state proton transfer. Acc. Chem. Res. 51, 1681–1690 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Pensack, R. D., Banyas, K. M., Barbour, L. W., Hegadorn, M. & Asbury, J. B. Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials. Phys. Chem. Chem. Phys. 11, 2575–2591 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Tamaki, Y. et al. Trapping dynamics of electrons and holes in a nanocrystalline TiO2 film revealed by femtosecond visible/near-infrared transient absorption spectroscopy. C. R. Chim. 9, 268–274 (2006).

    CAS  Google Scholar 

  33. Pensack, R. D. & Asbury, J. B. Barrierless free carrier formation in an organic photovoltaic material measured with ultrafast vibrational spectroscopy. J. Am. Chem. Soc. 131, 15986–15987 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, M. et al. Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts. Nat. Commun. 13, 6720 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Santen, R. A., Markvoort, A. J., Filot, I. A., Ghouri, M. M. & Hensen, E. J. Mechanism and microkinetics of the Fischer–Tropsch reaction. Phys. Chem. Chem. Phys. 15, 17038–17063 (2013).

    Article  PubMed  Google Scholar 

  36. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  38. Sun, K., Zhao, Y., Su, H. Y. & Li, W. X. Force reversed method for locating transition states. Theor. Chem. Acc. 131, 1118 (2012).

    Article  Google Scholar 

  39. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  CAS  Google Scholar 

  40. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Huang, P.-R. et al. Impact of lattice distortion and electron doping on α-MoO3 electronic structure. Sci. Rep. 4, 7131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan, M. K. Y. & Ceder, G. Efficient band gap prediction for solids. Phys. Rev. Lett. 105, 196403 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Li, Y.-F. et al. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 47, 3361–3368 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, S. & Carter, E. A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFE0114900, 2021YFB3800300, 2021YFA1500303, 2021YFA1500300 and 2021YFA1502804), the National Natural Science Foundation of China (NSFC: 22102007, 21991150, 22222306, 22172150, 21821004 and 22072090), the Fundamental Research Funds for the Central Universities (buctrc202112), Certificate of China Postdoctoral Science Foundation Grant (2019M650306 and 2020T130010), USTC Research Funds of the Double First-Class Initiative (YD2060002012), K. C. Wong Education (GJTD-2020-15), Science and Technology Program of Sichuan Province (2021YFSY0021), Innovation Program for Quantum Science and Technology (2021ZD0303302), and the New Cornerstone Science Foundation. We thank the support of the BSRF (Beijing Synchrotron Radiation Facility) during the XAFS measurements at beamline 1W1B. We also appreciate technical support from H. Matsumoto and C. Zeng, Hitachi High-Technologies (Shanghai) Co. Ltd, for high-resolution STEM characterization. High-performance computational resources were provided by the University of Science and Technology of China and Hefei Advanced Computing Center. D.M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

D.M. designed the study. X.Q., M.X. and R.Z. conducted material synthesis and carried out the catalytic performance test. X.Q. carried out the in situ DRIFTS experiment and data analysis. X.Q. and J. Zhang carried out the CO chemisorption experiment. X.Q., J.G., J. Zheng., Z.Y. and X. Li carried out the in situ ultrafast IR experiment and data analysis. X.Q., M.X. and L.Z. conducted the X-ray absorption fine structure spectroscopy measurements and analysed the data. Y.X. and J.X. carried out quasi in situ XPS experiments and data analysis. X. Liu contributed to the measurement and analysis of the environmental STEM experiment. J.-X.L., L.F., J.-W.Z. and J.-L.C. performed the DFT calculations. X.Q., M.X., J.G., J.-X.L., X. Liu, M.W. and D.M. wrote the paper. All authors performed certain experiments and discussed and revised the paper.

Corresponding authors

Correspondence to Xi Liu, Jin-Xun Liu, Junrong Zheng or Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Shuxin Ouyang, Yuan Ping, Lianzhou Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40 and Tables 1–8.

Supplementary Data 1

Source data for Supplementary Fig. 10.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Xu, M., Guan, J. et al. Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2−x/Ni photothermal catalyst. Nat Energy 9, 154–162 (2024). https://doi.org/10.1038/s41560-023-01418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01418-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing